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Abstract

This research developed a parameterized model that accounts for system overhead and de-

termines when an Ada runtime environment can no longer successfully execute a given Ada task

set and still meet all deadlines. The Ada Compiler Evaluation Capability benchmark was used to

characterize an actual runtime environment. Using that data, a generic model of a preemptive, rate

monotonic priority based runtime system was developed which accounts for overhead due to clock

updates, context switching, task suspension, and synchronization. Validation was based on the

Hartstone benchmark. First, the benchmark was executed using the actual runtime environment.

Then, those results were compared with the execution of the benchmark using the model. In all

cases, except one, the model predicted the point where the task set would fail. A runtime system

optimization omitted from model caused the single failure. Experiments conducted using the model

allowed the demonstration of the following results. System overhead can be modeled within the

existing framework of rate monotonic scheduling theory. Runtime optimizations can be extremely

sensitive to phase relationships between task periods and workloads and can render a schedulable

task set unschedulable. Requirements of the task set and the performance of the runtime system

must be considered simultaneously.

xii



A MODEL FOR DETERMINING TASK SET SCHEDULABILITY IN THE

PRESENCE OF SYSTEM EFFECTS

L Introduction

1.1 Background

An embedded system is a computer system whose main purpose is other than computational,

and in many cases, it is used to react to stimuli from its environment "rapidly enough" to control

that environment (2). Embedded systems can range from a single microprocessor to a network

of large computers and are found in a wide variety of areas. Typical applications of embedded

systems include flight control systems in aircraft and missiles, chemical process controllers, control

applications in nuclear reactors, data acquisition systems, and environmental control systems. The

key phrase in the above definition is rapidly enough. In the context of this research, rapidly

enough means real-time - more specifically hard real-time. In a hard real-time embedded system,

if the system does not react rapidly enough and it misses a deadline, a catastrophic failure will

occur. A catastrophic failure may result in the loss of life, property, irrecoverable loss of data, or

a combination of the three. Therefore, the programs which run on embedded computer systems

must not only be functionally correct, they must be temporally correct as well.

Given that the timing correctness of a hard real-time system is vital, how should the pro-

cessor(s) in an embedded system be utilized such that all tasks that the processor must execute

will execute rapidly enough to affect the environment? The area of research that investigates this

problem is known as scheduling theory. The goal of any scheduling theory is to determine how to

schedule a set of tasks with deadlines on a processor or processors so that all the deadlines are met.

This has been widely studied on a theoretical level. Often, however, there is a discrepancy between

what the scheduling theory predicts and what is actually observed when the embedded system
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is built (16:i). The processing reserve capacity is frequently much less than analysis indicated it

should have been and/or task deadlines are missed when analysis indicated they would be met.

One cause of this discrepancy can be attributed to system overhead and blocking not accounted

for by the scheduling theory. Some examples of system overhead and blocking include context

switching time, task rendezvous (or synchronization), I/O blocking time, shared data access, and

garbage collection. Not accounting for these types of system overhead within the scheduling theory

can prove to be enormously expensive to correct in a system design. These types of discrepancies

were encountered when estimating throughput requirements for the Navy F/A-18A and A-12 air-

craft programs (16:33). By regulation, the Navy required a 50% throughput reserve. Based on the

estimation techniques used by the system designers, the Naval Avionics Center (NAC) determined

that the actual throughput reserve was significantly less than that. The Navy noted that correct-

ing these deficiencies in an existing design "... is technically challenging, and can add months to a

schedule, as well as depleting large amounts of money from the program budget" (16:33).

In contrast to overutilizing a processor's capacity, another possibility (although far less likely)

is that not enough of the processor's capacity was utilized. The embedded system could have been

built with a less powerful (less expensive) processor. Whatever the outcome, time, resources, and

money have been wasted. In addition, the potential for the ultimate failure of the design has been

introduced into the system. It is essential, then, that the scheduling theory used to design the

embedded system be accurate.

1.2 Problem and Research Objectives

Requirements specifications for embedded systems often use CPU reserve capacity as a design

parameter (16, 23). The reserve capacity is then used as an evaluation criteria when determining

whether the final design meets specifications. In addition, the reserve capacity of a processor is a

fundamental limitation on how much work a given design can perform and hence, a fundamental
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limitation on the expandability of the design. It is important, then, that the reserve capacity of a

processor be estimated accurately during the design phase before the system is built.

Reserve capacity is defined as the amount of additional processing time available after the

processor has completed a pre-defined amount of work. It is expressed as a percentage of a pre-

defined total execution time over which the pre-defined workload is distributed. A processor with

eight units of processing to complete in ten units of time has a reserve capacity of 20%. The eight

units of processing time includes both task execution time as well as any system overhead incurred

as a result of the task execution. It is important to note that not all of the 20% reserve capacity

will be available for task execution. A portion of it will be consumed by system overhead.

System overhead can be informally defined as the cost of managing system resources necessary

to execute user tasks. If the cost of managing those system resources is too great, user tasks can miss

their deadlines, even when sufficient processing capacity exists. Therefore, reasonable assurance is

needed, early in a system's design that: (1) sufficient reserve capacity is maintained as dictated

by the design, and (2) that the system overhead is not so co :tly that it causes user tasks to miss

deadlines.

Rate monotonic analysis (RMA) has been proven to be a significant benefit in both the area

of predicting reserve capacity and predictable task scheduling (22). Rate monotonic scheduling

theory was first introduced by Liu and Layland (11). The name of the scheduling theory reflects

the strategy used to schedule processes or tasks. Tasks are given execution priorities based solely

on their rate (how often they execute). The higher the rate of the task, the higher the priority (i.e.

a monotonically increasing function of the rate). Although to a lesser degree than many scheduling

theories, the rate monotonic algorithm also suffers from a discrepancy between what is predicted

to occur and what is observed on a real machine where system overhead is an unavoidable factor.

This discrepancy leads to the following research objectives.
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1) To demonstrate that intimate knowledge of the entire runtime environment is not re-

quired to make an accurate determination of reserve capacity and schedulability - that

is, a subset of key runtime parameters is sufficient.

2) To provide insight into an application task's interaction with the runtime environment

during execution.

3) To develop a parameterized model of a runtime environment which will provide a con-

servative determination of task schedulability and processor reserve capacity.

1.2.1 Research Hypothesis The primary hypothesis of this research is that any system over-

head (system tasks executed at other than rate monotonic priorities) has the same effect on task

schedulability as a lower priority application task blocking the execution of a higher priority user

task. A natural result of this hypothesis, if true, is that system overhead, sufficiently characterized

and accurately measured, can be modeled in the same manner as user task priority inversion or

non-preemptable sections of code. The ability to accurately predict the effect of system overhead

can significantly reduce the risk associated with estimating processor capacity requirements and

determining task schedulability early in the design of a system.

1.2.2 Scope This research effort was limited to a uniprocessor executing two classes of task

sets: independent periodic tasks and dependent periodic tasks. Independent means that the tasks

do not communicate or share resources (other than the CPU). Dependent means that tasks must

synchronize or communicate at one or more points during their execution.

1.3 Approach

A different way to state the problem this research investigated is: how does the execution

of system tasks (or overhead) that do not follow the priority assignments of the RMA affect the
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reserve capacity of the processor (clearly it decreases it, but by how much?). Further, how do these

same system tasks affect the schedulability of the user task set.

The general approach used to investigate this was: (1) predict the behavior of a given task set

by modeling the runtime system tasks and the user task sets interaction with them, (2) download

an executable image of that user task set to the target processor and observe the actual behavior.

The results of (1) and (2) were compared to refine the model in order to increase its accuracy. The

task set executed on the target processor served to validate the model.

The behavior of a given task set was determined by simulating the services a runtime system

provides and accounting for the CPU time those services require. For example, if Task A requests

synchronization with Task B, the runtime system will require access to the CPU in order to deter-

mine whether Task B is ready to synchronize. If Task B is ready, the runtime system will perform

the synchronization. If Task B is not ready, the runtime system will place Task A on a queue to

wait for Task B. The amount of time that the runtime system requires the CPU will directly affect

whether user task deadlines will be met. More specific details of the methodology and the runtime

system model are found in Chapters III and IV.

The tools needed to support this approach include: a higher order language in which the task

set is written, target hardware, a method of identifying and measuring system tasks in order to

construct a model of them, and a task set to execute.

1.3.1 High Order Language Ada was chosen as the Higher Order Language (HOL) for the

following reasons: (1) Ada is the official HOL of the DoD and therefore research related to its use

in embedded systems is of benefit to programs using Ada, and (2) Ada was specifically designed for

embedded systems and contains language constructs which allow for investigation of a task set's

behavior at the HOL level. While Ada was used in this research, the results apply to any HOL in

which the execution of user tasks follow the RMA priority assignment scheme.
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1.3.2 Target Hardware The target hardware was chosen based on two criteria: (1) the

processor should be representative of the type of processor used in embedded systems such as

robotics and other control applications, and (2) an Ada cross-compiler must exist and be readily

available for the target processor. Based on these two criteria, the Motorola 68020 processor was

chosen as the target processor (14:1-5).

1.3.3 System Tasks System tasks are often provided by the compilation system in the form

of a runtime environment. In some cases they are developed in conjunct~cn with the application

tasks. In either case, to determine the effect of the environment on the user task set, the system

functions must be identified and measured. The Ada Compilation Evaluation Capability (ACEC)

developed for the Avionics Directorate (WL/AAAF) of Wright Laboratory at Wright-Patterson

Air Force Base, Ohio, was used to identify and measure these functions. Specifically, the following

items were measured:

1) context switching time

2) DURATION accuracy

3) task synchronization

4) CLOCK evaluation

5) TIME and DURATION evaluation

6) DELAY function and

7) interrupts

1.3.4 Task Set The driving criteria in choosing a task set for this research was that the work

performed by a given task should be accurately characterized, easily measurable, and repeatable.

Further, the amount of work performed by the task set should be representative of that executed

by real-time embedded applications. The amount of work performed is of primary importance due
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to the objective of the research. That is, the purpose of the task set is not to determine how

many MIPS or MFLOPS a processor can execute, but rather to ensure a given amount of work was

performed.

To generate this task set, the Hartstone benchmark developed by the Software Engineering

Institute (SEI) was used. Three classes of task sets have been defined: (1) periodic (harmonic),

(2) periodic (non-harmonic), and (3) periodic (harmonic) with synchronization. Periodic tasks

are some of the most common tasks in a real-time system (1:5). The harmonic frequency (task

frequencies that are integer multiples of each other) was chosen since that will result in a high

theoretic utilization for the RMA. Non-harmonic frequencies were chosen because they have a

low theoretic utilization. Each of the classes of task sets will be observed while varying various

parameters of the task set: work performed, frequency of execution, and synchronization. A block

diagram of the test bed is shown in Figure 1.1 and a description of each component in the test bed

can be found in Section 3.3, Page 3-7.

Vax 68020
(Host) Single

XD A& Board
Cibr ~AMC) Computer

* e•c. (Target)
* ACEC l fu!i t3_r{C---rnkWW Vi RS-M2)

Figure 1.1. Test Bed Block Diagram

1.4 Assumptions

Assumptions about various aspects of this research include:

1) The timing characteristics of the runtime environment (context switch, rendezvous, etc.)

will be accurately determined through the ACEC test suite.

1-7



2) The Hartstone benchmark reserve capacity and measurement of the processor capacity

in Whetstones is accurate.

3) The pipeline architecture of the MC68020 will not introduce any significant error into the

timing measurements. A hardware pipeline can increase execution speed by overlapping

the execution of instructions at the microcode level. Whether this optimization can

occur, however, is highly dependent state of the pipeline (e.g. the particular set of

macro instructions in the pipeline) and therefore may not occur consistently in every

case. The assumption being made iS that any error this may introduce into the timing

measurements is so small that it will not materially affect the accuracy of those timing

measurements.

1.5 Organization

The remainder of the document is organized in the following manner:

1) Chapter II contains a review of literature used in the course of this research.

2) Chapter III presents a more detailed description of the research methodology used and

the test cases used to validate the runtime system model.

3) Chapter IV contains a description of the requirements, design, and functional testing

of the model.

4) Chapter V presents the results of the validation tests.

5) The results, conclusions, and recommendations of this research are contained in Chap-

ter VI.

6) Appendix A documents the development and analysis of the equation used to model

the XD Ada runtime system implementation of the Ada delay statement. In addition,

it contains the raw data used to develop the equation.
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7) Appendix B presents the analysis of the XD Ada clock update function.

8) Appendix C contains the raw validation data.

9) Appendix D contains the source code for the model and is available upon request.

10) Appendix E contains the raw ACEC data and is available upon request.

11) Appendix F is a user's manual for the model and is available upon request.
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I. Review of Current Literature

2.1 Organization

This chapter is organized into two sections. The first section contains literature dealing with

hard real-time scheduling algorithms, especially RMA and extensions to RMA. The second section

covers literature dealing with the performance measurement of hard real-time systems.

2.2 Scope

Much of scheduling theory deals with applications in which a statistically fast response is ac-

ceptable. These scheduling theories strive to ensure that no task within a system is long deprived of

the resource it is requesting. Personal computers, mainframe computers, communications networks,

and virtually any multi-user system fall into this category. Scheduling theories in (hard) real-time

systems, in contrast, will strive to meet deadlines set by the design even at the cost of never execut-

ing lower priority tasks. This review will be limited to literature that addresses scheduling theories

used in real-time systems and the performance measurement of real-time systems.

2.3 Overview of Common Scheduling Theories

In any computer system, the scheduling theory (or scheduling algorithm) determines when

and by whom system resources are utilized. In a real-time system, an additional constraint of a

deadline is added. The scheduling theory in a real-time system not only determines when and who

gets system resources but additionally, the "when and who" is subject to higher priority tasks not

missing their deadlines. Several methods have been developed to solve the problem of allocating

system resources in this manner and they include the following strategies (12):

1) shortest-process-time first

2) earliest-deadline first
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3) shortest-slack-time first

4) cyclic executive

5) fixed priority

2.3.1 Shortest-process-time first As the name suggests, tasks that require the least amount

of CPU time are given priority in this scheduling strategy. A cursory analysis of shortest-process-

time first reveals a characteristic that precludes this scheduling strategy's use in a hard real-time

system. The shortest-process-time first does not take into account any deadlines associated with

the task. Consider the periodic tasks shown in Table 2.1:

Table 2.1. Shortest-process-time first task set

Tasks Process Time Period Deadline

Task A 1 10 end of period
Task B 3 6 end of period
Task C 4 7 end of period

Assuming the worst case phasing and ignoring system overhead, Task A will run first and

complete execution at T = 1 before its deadline, Task B will then run completing its execution at

T = 4 before its deadline, Task C would then run but not complete execution until T = 8, one time

unit past its deadline.

2.3.2 Earliest-deadhne first Earliest-deadline first assigns priority to the task with the clos-

est deadline at any given point in time. The earliest-deadline-first algorithm is optimal in the sense

that if a successful schedule for a set of tasks is possible, this algorithm will produce one (11).

The drawback to this algorithm, in a real-time environment is twofold: (1) it is computationally

expensive to determine whether a set of tasks can be scheduled at an arbitrary instant in time, and

(2) if the processor utilization is greater than 100% (i.e. the processor is in an overload condition)

the algorithm will fail unpredictably, allowing a task to execute even though it has no chance of

meeting its deadline (12). In contrast with shortest-process-time first scheduling which did not

account for deadlines, shortest-deadline does not account for processing time.
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2.3.3 Shoriest-slack-time first Shortest-slack-time first executes the task which has the min-

imum difference between its deadline and the processing time remaining. In the same manner as

earliest-deadline first, shortest-slacktime first is computationally expensive. It also has the effect,

in practice, of delaying a task's execution until any preemption at all will cause the task to miss

its deadline. Therefore, this algorithm is seldom used (12).

2.3.4 Cyclic ezecutive The cyclic executive model is the traditional scheduling solution of

many, if not most, hard real-time systems (22). With a cyclic executive, task executions are

explicitly interleaved such that the deadlines of each task can be guaranteed. The schedule is laid

out prior to execution so the computational expense of determining a schedule is minimal. A key

advantage to the cyclic executive is the predictability of the execution times. As long as task

execution times are bounded, task deadlines are guaranteed to be met.

A cyclic schedule is created in the following manner (3). First, the schedule is divided into

a fixed time interval called a major cycle (see Figure 2.1). This length of the major cycle must

be the least common multiple of the task periods in order to ensure the proper periodicity of the

tasks. Each major cycle is divided into frames or minor cycles. Minor cycle boundaries correspond

to points where the proper timing is enforced through a timer interrupt. Due to this timing

enforcement, the minor cycle can be no longer than shortest period of the process being scheduled.

If a task requires an amount of processing time that is greater than one frame, the processing time

must be broken into several subactions or chunks and distributed across several frames. Unless a

mode change occurs (such as system shutdown) the major cycle is continously repeated.

The cyclic executive is a fragile algorithm in two important aspects. If a task requires more

frames to complete its execution than it has been allotted by the schedule, a frame overrun is said

to have occurred. Two actions typically take place when a frame overrun occurs; either the task

is aborted or an empty frame within the major cycle can be used to handle the extra execution.

Of course, depending on the application, either solution may not meet the timing constraints (3).

2-3



The fragility is also manifest when designing a cyclic executive schedule. Consider the following

example (22). A task set has periods of 100 : 150 : 350 = 2 : 3 : 7. A minor cycle of 50 would

require a major cycle of 42 minor cycles. Any change in the design, periods of the tasks, or CPU

time required by the task would require the schedule be reaccomplished. This entails a significant

effort, especially if it occurs late in the design phase. Another problem is that much of the processor

capacity can remain unused if the task's worst case execution time is much greater than its typical

case execution time.

Mejor Cyde
Minor Cyde (Frome)-------

Aiocated CPU Tim.r I

From Ids

Tin,(vea: i Timo, (AV1M9o
i for Im forI

Task A Task B Task C Task A

yet COOdeo) cOM*Wo)

Figure 2.1. Cyclic Executive Schedule

2.8.5 Rate Monotonic A fixed priority algorithm executes tasks based on a priority deter-

mined prior to execution. The RMA is a variant of the fixed priority scheduler. In the seminal

paper on RMA (11) it was shown that a schedule will always exist for task set with priorities

assigned according to the RMA on a processor whose utilization is below a certain bound.

Tasks are assigned static priorities based solely on their rate (how often they execute). The

higher the rate of the task, the higher the priority (i.e. a monotonically increasing function of the

rate). Essentially, Liu and Layland established that if the sum of the ratios of the time to execute a

set of tasks and the periods of the tasks is less than or equal to n(21/" - 1), (0.693 as the number of
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tasks approaches oo) then those tasks can be scheduled using rate monotonic priority assignment.

This relationship is expressed by the following equation.

rE- < u(n) = n(21/n -I
To --

where n is the number of tasks, Ci is the time to execute task i and T, is the period of task i.

This algorithm was a landmark achievement since it separated the functional correctness of

a task from its timing characteristics. As long as the sum of the set of task's ratios is less than

or equal to U(n) the task set can be scheduled without regard to any other factor. In fact, this

property has the added benefit that even during processor utilization greater than U(n) (even if

U(n) is greater than 1), the set of tasks whose ratio is less than U(n) (which is called the stable

set) is guaranteed to meet their deadlines. Thus, the RMA is a stable algorithm during overload

conditions for the tasks in the stable set.

The theory, however, is limited by assumptions that the authors made. First, the tasks

are assumed to be periodic or executed on a regular basis (e.g. every 5 milli-seconds). Second,

task communication was not accounted for. Finally, the tasks' execution times are assumed to be

bounded by a constant. These assumptions have been relaxed by subsequent research.

2.3.6 Extensions to RMA For all its advantages, the RMA processor utilization bound of

0.693 for guaranteed schedulability is frequently limiting in practice. Lehoczky, et al. extended

that bound to 0.88 for a randomly chosen (or average case) set of tasks (9). A theorem was derived

to determine exactly if a given task set could be scheduled. The average case behavior of a task

set is theoretically interesting because it showed that the rate monotonic theory is applicable to a

wider portion of realistic problems.

The average case described, however, suffers from a slow convergence. That is, a large task

set is needed for the behavior to be exhibited. The exact characterization of a given task set is more

applicable to this research. The theorem derived can determine that, even though the utilization
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may be greater than the upper bound determined by Liu and Layland, the tasks can nevertheless

be scheduled. The theorem checks each and every scheduling point of the task set. If a schedule

exists, it will be found by the following theorem (9).

A set of n independent periodic tasks scheduled by the rate monotonic algorithm will always

meet its deadlines, for all task phasings, if and only if

Vi,1 < i < n,mn( c- = 1 ra--1 < 1
F;=I k ! 7, Tj -

(k, 1) E R,

where Cj and Tj are the execution time and period of task rj respectively and Ri = {(k,l) I 1 .<

k _5 i, 1 = 1,...- , L

Note that although this theorem states "scheduled by the rate monotonic algorithm" it will,

in fact, determine if any schedule exists for any task set using a fixed priority assignment scheduling

algorithm.

•.8.7 Task Synchronization Dependent tasks (or tasks that synchronize) present a problem

for RMA. When tasks synchronize, a higher priority task may be required to delay its execution to

wait for a lower priority task. This requirement to wait for a lower priority task is contrary to the

primary principle of RMA, namely, that a higher priority task will always preempt a lower priority

task. Common synchronization protocols include semaphores, monitors, and Ada rendezvous. Use

of these synchronization protocols could lead to a high priority task being blocked indefinitely.

Consider the following example.

A task set consists of five tasks TI, T2, T3 , T4 , Tr where the priorities ranked from T5 (highest)

to T1 (lowest). T1 and T5 share a common memory location through a semaphore. Suppose T1 locks

a semaphore and is subsequently preempted by T5. T5 also needs the semaphore but must wait

for T1 to unlock it. In the mean time, T, is subject to preemption from T2, T3 , and T4, multiple
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times causing the highest priority task, T5, to wait arbitrarily long to execute. Clearly, this type

of situation is unacceptable in a hard real-time environment.

For this reason, the priority ceiling protocol was developed (22). The protocol has two basic

tenets. First, if a task blocks the execution of any higher priority task, it will inherit the priority

of the highest priority task blocked. Second, a task is only allowed to enter a critical section if the

section will always execute at a priority higher than the inherited priority level of any preempted

critical sections. This protocol will ensure freedom from mutual deadlock and provide a bounded

blocking time. A high priority task using the priority ceiling protocol will be blocked at most once

by a lower priority task.

Given these properties of the priority ceiling protocol, the maximum time a higher priority

task can be blocked is equivalent to decreasing its deadline by the same amount. If a task's deadline

is at T = 100 and it can be blocked at most by 30 units of time, its equivalent deadline is now

T- =70.

To account for this blocking, the following equation applies:

A set of n independent periodic tasks scheduled by the rate monotonic algorithm and using

the priority ceiling protocol will always meet its deadlines, for all task phasings, if and only if (21)

Vi, I ,mn 1 II C, BA (2.1)ci-L-1- +T

j=- 1 iTk k B

(k, 1) ER,

where Cj and Tj are the execution time and period of task rj respectively, R,- {(k, 1) 1 < k < i,

I L .,•J} and B, is the worst case blocking time for T,.
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2.4 Performance

This section summarizes the literature dealing with the performance measurement of com-

puter systems. Specifically, this section reviews literature that addressed (1) how to measure the

performance of an embedded target, (2) pitfalls associated with performance measurement of com-

puters, and (3) factors that could distort the performance measurement of a given system.

2.4.1 Performance measurement of an Ada compilation system Measuring the performance

of a compilation system is a complex procedure (4:760). Three aspects of this measurement are

critical for success: isolating the feature to be measured, repeatability, and sufficient accuracy to

obtain meaningful results. Typically, isolating the feature to be measured is achieved by executing a

control loop without the feature to be measured, and a loop containing the feature to be measured.

Theoretically, the time difference between these loops is the time required to execute the feature

under test. There are several caveats however. First, if the compilation system clock is being

used to measure time, it must be of sufficient precision relative to the feature being measured, or

inaccurate results will be obtained. Second, steps should be taken to ensure that any compiler

optimization does not interfere with the measurement by optimizing out the very feature that is

being measured.

As a case in point, during testing done by the Software Engineering Institute, a certain

benchmark test was consistently returning negative time results (26). The cause was eventually

determined to be related to the Ada CLOCK resolution of the particular compilation system

Factors which may cause variations are (26): clock overhead, optimization, memory allocation,

garbage collection, and other operating system effects.

In order to sufficiently characterize the behavior of an Ada compilation system relevant to

real-time performance, the following elements should be measured (4:765):

1) subprogram calls

2-8



2) task activation

3) task termination

4) task synchronization

5) CLOCK evaluation

6) TIME and DURATION evaluation

7) DELAY function

8) garbage collection and

9) interrupts

Three benchmarks have been generally available to test these important aspects of an Ada

compilation system (6):

1) the University of Michigan Ada benchmarks,

2) the Performance Issues Working Group benchmarks (or PIWG, an Association of Com-

puting Machinery special interest group), and

3) the Ada Compiler Evaluation Capability (ACEC).

Over the course of development of these three benchmarks, the functionality of the University

of Michigan benchmarks and PIWG benchmarks has been incorporated into the ACEC.

The ACEC Reader's Guide (17) defines what the ACEC is designed to accomplish, the in-

tended users of the package, and the rationale of the design. The ACEC was designed to compare

the runtime performance of different compiler implementations as well as to compare various non-

performance related aspects of a compiler such as: assessment of a symbolic debugger, library

system management, and diagnostic message clarity. The ACEC tests incorporate many features

to test for and to defeat many of the compiler optimizations or other effects that would result in
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inaccurate results. This test suite is widely used by compiler manufacturers to test their compilers

prior to release.

2.4.2 Task set performance measurement A limitation with benchmarks such as the ACEC

is that they focus on a single activity or aspect of a compilation system. They do not attempt to

measure the performance of a set of activities and whether or not this set of activities (or tasks)

meet a given set of performance criteria. In fact, trying to draw general conclusion from such

measurements is difficult and risky (1). Since a real-time system will be performing many tasks,

though, it is important to establish that the given set of performance criteria is being met.

The Hartstone benchmark is one such benchmark that attempts to quantify whether or not

a set of activities meet a given set of performance criteria. The requirements document for the

Hartstone (1) defines an operational concept and requirements for a set of benchmarks designed to

test the ability of a system to run hard real-time applications. The Hartstone was not designed to

test a particular scheduling paradigm or programming language. Although the first implementation

of it was in Ada, it was designed to be translated to any language being utilized for hard real-time

systems.

The benchmark was designed to have the following characteristics (1).

1) It spans the entire hard real-time problem domain - it contains periodic and aperiodic

event driven tasks. The aperiodic events are both user-initiated and interrupt-driven.

Task synchronization, access to common data, mode changes and distributed processing

are included.

2) The benchmark tests increase in complexity. That is, in the series of tests, simple or

(presumably) easy to accomplish tasks are run first followed by tests that are considered

more difficult.

2-10



3) Each test has a baseline requirement and a strategy for increasing that requirement to

stress the system along a number of dimensions. For instance, the periodic workload

could be increased as other factors remain constant. Other dimensions that can be

independently varied are: processing load, aperiodic events, and task frequency.

4) Each test is self-verifying. The test itself verifies that the computations are being

performed correctly and that it met its deadline.

5) The computational load is synthetic. In the case of the Hartstone, a self-verifying version

of the Whetstone is used for the computational load. This ensures that when comparing

various processors or architectures, the same amount of work is being performed.

6) A relative figure of merit is assigned for each test that clearly distinguishes between

actual work being done and system overhead. Therefore, the more useful measure of

maximum utilization prior to a deadline being missed can be determined rather than

maximum throughput.

The Hartstone consists of five series of tests. Table 2.2 lists the main objective of each test.

Table 2.2. Hartstone Tests
Test Series Measurement Objective

PH Periodic Tasks, Harmonic Frequencies
PN Periodic Tasks, Non-Harmonic Frequencies
AH Same as PH with APeriodic Tasks Added
SH Same as PH with Synchronization Added
SA Same as PH with APeriodic Tasks and Synchronization Added

2.5 Summary and Conclusions

Scheduling theories have received much attention in the literature. Due to the computational

expense of most scheduling schemes only the cyclic executive and fixed priority scheduling has seen

wide use in the real time applications. A common missing element in most literature, however, is

that system overhead issues such as interrupts, task synchronization, and other functions necessary
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for the operation of a real system are not addressed in a comprehensive manner. That is, most

literature either ignores system effects completely or only addresses a subset of system effects,

while ignoring other effects that have an equally pronounced impact on the schedulability of a

given task set. The end result is that if a software engineer needs to determine the feasibility of a

particular schedule, a model must be constructed from a variety of sources and is likely to be tied

to a particular runtime system. A later change in the runtime system might require another model

be constructed.

In order to account for system effects, they must be measured. To measure individual features,

the standard approach is to isolate the feature to be measured by executing a control loop without

the feature, and then a loop containing the feature to be measured. The time difference between

these loops is the time required to execute the feature under test. While this method will give useful

results, it is not sufficient to enable one to draw any general conclusions about the behavior of the

system while running a given task set. For instance, while you may know that a particular runtime

environment takes z microseconds to reclaim unused memory (garbage collection), using the control

loop approach gives no information about under what conditions unused memory is reclaimed. In

fact, when a runtime system does garbage collection may directly affect the schedulability of the

user task set. In order to determine the behavior of a system which takes into account system

effects that occur during the execution of a task set, other measurement techniques are used. One

such approach is to execute a task set that performs a known amount of work and to increase the

workload (or another parameter of interest) and observe the effect on the schedulability of the task

set.

This research will focus on the construction of a model which will permit a schedulability

determination of a given task set under a controlled load. It will, in essence, be a plant/load simu-

lation of a runtime system. Load simulations are widely used as a means of verification of various

system properties (10). The contribution this research makes is to show that a parameterized

2-12



model of the runtime system (or a parameterized load simulation) can be constructed based on the

measurement of a subset of key runtime system features thereby making the model applicable to a

wide range of runtime environments. Not only will the model determine whether a particular user

task set can be scheduled under a particular runtime system, but also whether it can be scheduled

under any runtime system with the same parameters. If, in fact, the runtime system is being de-

signed in concert with the user tasks, the execution budget can be used in the model in place of

the actual measurement of particular runtime system. This type of model will permit, early in a

system's design, an analysis of whether a particular task set will execute. Additionally, it can also

be used to determine the worst case overhead a particular task set can suffer before the task set

will no longer meet its deadlines.
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III. Methodology

3.1 Introduction

This chapter presents the research methodology used to construct and validate a task schedul-

ing model, RATESIM (RATE monotonic scheduling SIMulation), which predicts the behavior of

a given task set. Recall that the objective of this research is to provide a means of determining,

early in the design phase, the schedulability of a given user task set while taking into account the

effect of the runtime environment (system tasks) in which that user task set must execute. The

RATESIM program will be used to fulfill this objective.

First, the system tasks are identified and the methods to measure their effects are presented.

Next, user task sets (used for validation) are presented along with the objectives of each validation

test. The equipment being used is identified and the test bed configuration is described. Finally,

the data to be gathered and the statistical analysis of that data is discussed.

3.2 Research Methodology

In order to meet the objective stated above, the following basic research methodology was

used.

1) Identify the system tasks.

2) Measure those system tasks to determine the amount of CPU time they use and at what

frequency.

3) Define a user task set.

4) Predict the behavior of the user task sets based on the system tasks and determine the

effect the system tasks will have on the schedulability of the given task set (i.e. will the

task set still meet all its deadlines?). Specifically, the system tasks will be modeled as

a blocking factor that each user task in the task set suffers.
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5) Construct and execute the user task set on the target processor and observe whether

or not the prediction was accurate.

6) Go to step 3.

The above methodology will serve as the basic framework for investigating the effect system

tasks have on the schedulability of a user task set. A discussion of each specific step follows.

3.2.1 Identify the System Tasks System tasks are those functions which are necessary to

manage the resources of an embedded system but nevertheless do not directly perform useful work

from the perspective of the user task. System tasks allow or facilitate the performance of useful

work by user tasks. In addition, system tasks often immediately preempt user tasks, without regard

to any user deadlines.

The following list is a preliminary set of system tasks which will affect the schedulability of

a user task set. These were identified through searching existing literature (4, 26).

1) system CLOCK updates

2) context switching time

3) DELAY resolution

4) interrupts

5) TIME and DURATION evaluation

6) task synchronization

7) task activation

8) task termination

9) garbage collection
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While this is certainly not an exhaustive list of items that could affect a user task set when

implemented on a real machine, it represents those that have the most pronounced effect (26).

Dynamic task creation, termination, and garbage collection are system tasks not included in the

RATESIM model.

3.2.2 Measure the System Tasks The Ada Compilation Evaluation Capability (ACEC) test

suite (version 3.0) was used to measure the various system tasks which affect the schedulability of

the user task set. The ACEC is a compiler evaluation benchmark used to assess the capabilities

of Ada compilation systems. Its purpose is: (1) to allow comparison of different compilation

systems using objective, measured data and (2) to determine performance characteristics of a given

compilation system. The ACEC is intended to measure many aspects of an Ada compilation system

including: capacity limits, symbolic debuggers, library management systems, diagnostics, compile

time, code size, and execution time. Obviously, this research will limit its use of the ACEC to

determine the execution time of system tasks of interest in the compilation system executing on

the target hardware.

To measure the above system tasks, runtime performance benchmarks of the ACEC were used

coupled with the ACEC Single System Analysis (SSA) tool. The SSA tool extracts information

implicit in relationships between various test problems. The SSA major report categories include:

Language Feature Overhead, Optimizations, Run-time System Behavior, and Coding Style Vari-

ations. Over 1600 tests are included in the ACEC and the SSA can summarize and report the

performance of virtually every system task of interest in a variety of execution modes.

Figure 3.1 (18) is an overview of the ACEC. The area surrounded by the dashed line represents

the portion of the ACEC not utilized in this research. A detailed description of the ACEC and in

depth discussion and analysis of the measurement techniques are beyond the scope of this research.

These details can be found in the documents provided with the ACEC (17, 18, 19). A summary of

ACEC results are contained in Chapter V.
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Figure 3.1. Overview of the ACEC

3.2.3 Predict the effect - RATESIM The effect of the system tasks measured by the ACEC

on the user task set is determined by incorporating the execution time measurements into the

RATESIM model and then submitting the user task set to RATESIM. RATESIM "executes" the

user task set (e.g. accounts for the load) and determines, based on the ACEC measurements, the

interaction between the user task set and the system tasks.

RATESIM determines whether a user task has met its deadline by accounting for system task

and user task utilization of the CPU. Since it knows the deadlines of user tasks it can detect when

a user task has missed a deadline.

All system task execution times are paramneterized within RATESIM in order to allow for

easy modification should one wish to model a different runtime system. In addition, system tasks

not specifically paramneterized can be easily added by supplying the system task parameters to the

model. The most significant behavior that is currently embedded within the RATESIM model (and

therefore not easily modified) are: (1) a fixed priority, preemptive, event-driven scheduling strategy,

and (2) system tasks will always preempt user tasks. Priorities of user tasks are determined using

rate monotonic priority assignment (the higher the rate of the task, the higher the priority). Other
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embedded behavior includes two runtime optimizations considered general practice. Details about

these optimizations and the RATESIM design is contained in Chapter IV. RATESIM validation

details are in Chapter V.

3.2.4 Run the task set The user task sets are based on the SEI Hartstone benchmark version

1.0 (7). This benchmark provides well-defined tasks and allow task set parameters such as workload

and frequency to be varied. The benchmark tasks sets have been used as written when appropriate

and modified as needed to meet the objectives of this research. For example, the Periodic Tasks,

Non-Harmonic Frequencies (PN series) benchmark and the Periodic Tasks, Harmonic Frequencies

with Synchronization (SH series) benchmark described in the Hartstone requirements document

(1) have not yet been implemented. Therefore, the current Periodic Tasks, Harmonic Frequencies

(PH series) benchmark was modified to implement the PN and SH series requirements.

The following task sets have been defined for use to validate the behavior of RATESIM. For

each set, the measurement objective of task set has been identified.

3.2.4.1 Task Set A This task set consists of five periodic tasks (see Table 3.1) whose

frequencies are integer multiples of each other (harmonic). This task set represents a major class

of real-time applications. It has a high theoretical utilization based on RMA. Two parameters of

this task set are varied, the work performed (Cj, expressed in kilo-whetstones) and the frequency

(Tj). The objective in using this task set is to observe the interaction between the system tasks and

Cj. As Cj is increased, the system overhead should initially remain constant since no additional

overhead is induced. Conversely, as Tj is increased, user task CPU utilization should decrease

immediately due to an increase in task switching overhead.

3.2.4.2 Task Set B This task consists of a set of five periodic tasks (see Table 3.2)

whose frequencies are non-harmonic. This task set has a low theoretical utilization based on

RMA. The difference between this task set and task set A is that the system overhead should be
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Table 3.1. Task Set A - Periodic/Harmonic

Task 1 Frequency Kilo-Whetstones Kilo-Whetstones Requested Workload
No. (Hertz) per Period per Second Utilization

1 2.00 32 64 4.79%
2 4.00 16 64 4.79%
3 8.00 8 64 4.79%
4 16.00 4 64 4.79%
5 32.00 2 64 4.79%

significantly greater to start with due to the non-harmonic frequencies of the tasks. Non-harmonic

relationships between tasks will often defeat optimizations that the runtime system could normally

implement with harmonic task sets. This behavior is discussed further in Chapter V, Section 5.5.2.

Table 3.2. Task Set B - Periodic/Non-Harmonic

Task Frequency Kilo-Whetstones Kilo-Whetstones Requested Workload
No. (Hertz) per Period per Second Utilization

1 2.00 32 64 4.79%
2 2.30 16 36.8 2.75%
3 4.59 8 36.7 2.75%
4 6.89 4 27.6 2.06%
5 9.19 2 18.4 1.38%

3.2.4.3 Task Set C This task consists of a set of five periodic tasks in two different

configurations(see Tables 3.3 and 3.4). The task set frequencies are integer multiples of each

other (harmonic) and they have synchronization requirements. The parameter to be varied is the

frequency of each task in the task set. The objective of this task set is to validate the behavior

of the model during synchronization. Tasks that execute a workload (Task 5 in Task Set C2 does

not) have an initial requested utilization of 4.79% per period.

Table 3.3. Task Set CI - Periodic/Harmonic/Synchronization

Task Frequency Kilo-Whets Kilo-Whets Entry Call Accept at Accept
No. (Hertz) per Period per Second time (ps) at time (ps) j Workload (KW)

1 2.00 32 64 n/a n/a n/a
2 4.00 16 64 n/a n/a n/a
3 8.00 8 64 n/a n/a n/a
4 32.00 4 64 n/a 0 0
5 32.00 2 64 0 n/a n/a
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Table 3.4. Task Set C2 - Periodic/Harmonic/Synchronization

[Task Frequency Kilo-Whets Kilo-Whets Entry Call Accept at Accept
No. (Hertz) per Period per Second at time (pis) time (ps) Workload (KW)

1 2.00 32 64 n/a n/a n/a
2 4.00 16 64 n/a n/a n/a
3 8.00 8 64 n/a n/a n/a
4 32.00 4 64 n/a 0 2
5 32.00 0 64 0 n/a n/a

3.3 Equipment

Table 3.5 lists the equipment being used. A block diagram of the test bed is shown in

Figure 3.2.

Table 3.5. Research Equipment and software

Equipment Comment

Motorola 68020 target processor (the unit under test)
Vaxstation III development computer for SW benchmarks
XD Ada cross-compiler Ada compiler for 68020
Hartstone benchmark test cases
ACEC test suite measure compiler runtime performance

3.3.1 Target system The target processor is a Motorola 68020 on the MVME133A-20

Monoboard Microcomputer (15). The MVME133A consists of the MC68020 microprocessor and

the MC68881 coprocessor both running at a clock speed of 20 MHz. There is 1 MByte of dynamic

RAM onboard.

3.3.2 Host system The host system is a Vaxstation III running the VMS 5.1 operating

system. Communication to the target is provided through two serial ports. One serial port is used

to download the kernel and application code and the other is used as a debug communications port.

In this research the debug port was used to display messages from the application code.

3-7



3.3.3 Compilation System The compilation system used was the System Designers XD Ada

MC68020 cross compilation system (24). XD Ada consists of a cross-compiler, development tools

(builder, loader, assembler, librarian, etc.), debugger, predefined compilation units, and a run-time

object code library.

Vax 68020
(Host) Single

XD AdaCl BoardCompiler ExOQ" utamge"

(Ha,.o,. ACEC) Computer"Hartio" 0 T rg t
Benchwark BendlmWk R(Target)

ACEC (Cr vmunk.ion via RS-232)

Figure 3.2. Test Bed Block Diagram

3.4 Data

Data collected during this research came from three sources: the Hartstone benchmark, XD

Ada runtime kernel, and the ACEC. The data collected from those sources is listed in Table 3.6.

Table 3.7 explains the meaning of each data item.

Table 3.6. Research Data
Data Item Source

Task Set Hartstone/ User generated
Raw Speed Hartstone benchmark
Task frequency Hartstone benchmark
Workload Hartstone benchmark
Met Deadlines Hartstone benchmark
Missed Deadlines Hartstone benchmark
Skipped Deadlines Hartstone benchmark
Average Late Hartstone benchmark
Task Utilization Hartstone benchmark

Context Switch Time ACEC
Delay Time ACEC
Rendezvous Time ACEC

Clock Update Time XD Ada kernel
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Table 3.7. Dalt•Definitions
Data Item Comment

Raw Speed Raw CPU speed in Kilo-Whetstones
Task frequency Number of times per second the task is required to

perform the requested workload
Workload Amount of work required of the task in Kilo-Whetstones
Met Deadlines Number of times during the test that the task successfully

completed its workload before the next scheduled activation time
Missed Deadlines Number of times during the test that the task failed

to complete its workload before the next scheduled activation time
Skipped Deadlines Number of scheduled activation times which were not performed

due to a previously missed deadline
Average Late Average lateness of missed/skipped deadlines
Task Utilization Percentage of CPU time dedicated to user tasks

Context Switch Time Worst case execution time to perform a context switch
Delay Time Actual Delay time
Rendezvous Time Worst case execution time to perform a rendezvous
Clock Update Time Worst case execution time to update system clock
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3.5 Data Analysis

The data collected during this research was used in two ways: (1) to describe the runtime

environment, and (2) to validate the RATESIM model behavior. The data collected using the

ACEC test suite was used to supply execution time of key runtime system functions - this served

as the basis for the description of the runtime system. The data collected Hartstone benchmark

served as the standard for determining "correct" behavior in the RATESIM model. Data from the

Hartstone benchmark and the RATESIM model were compared and any significant differences in

the data served to identify deficiencies in RATESIM. The model was then modified to correct those

deficiencies and the tests were rerun.

The first task in describing the behavior of the runtime environment was to analyze the data

gathered by the ACEC and construct a model of the individual runtime services being modeled

by RATESIM. The model was constructed to be able to "execute" independent and dependent,

periodic tasks. The following runtime services from the runtime system were needed as input to

the model: clock update time, context switch time, rendezvous time, and DELAY expiration time.

The following sections summarize the analysis that was performed for each of the services.

3.5.1 Clock Update Time The clock update of an Ada runtime system is the system function

used by an Ada program to provide any time-related requests of a program such as: TIME, YEAR,

SECONDS, DELAY, etc. The clock update service is typically interrupt-driven, periodic, and very

short. Even though it is typically short, it is a runtime function which will be a source of non-rate

monotonic utilization of the CPU and therefore could affect the schedulability of user tasks.

Since the clock update involves a relatively small amount of code, it lends itself to manual code

analysis to determine execution time. The analysis for the XD Ada runtime system clock update

is included in Appendix B and was determined take 15 .4pjs to update the clock every 41,600ps.
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3.5.2 Context Switch Time Context switch time is the time required to save the state of

the task currently executing and restoring the state of the task to switch to. The ACEC provides a

measure of the context switch time and determines a confidence interval. RATESIM uses the worst

case execution time for the context switch. Further details of the context switch time measurement

can be found in Chapter V.

3.5.3 Rendezvous Time Rendezvous time is the time required for two tasks to synchronize

their execution at a given point in time. The ACEC provides several measurements of rendezvous

time. It measures rendezvous with and without parameters, rendezvous when the calling task arrives

first and when the called task arrives first, and many different measurements of various combinations

of selects and timed entry calls. RATESIM modeled a simple rendezvous (no parameters, or

select alternatives) and used the worst case execution time for the rendezvous without regard to

whether the calling task or the accepting task arrived first. Further details of the rendezvous time

measurement can be found in Chapter V.

3.5.4 DELAY Expiration Time An Ada DELAY statement introduces a significant amount

of variability into the runtime behavior of a task set. The Ada Language Reference Manual (LRM)

(5) requires only that the DELAY statement provide "... at least the duration specified ... ". Ob-

viously, this type of behavior is unacceptable in a real-time environment. Therefore, any runtime

system designed for a real-time application will provide a DELAY statement that is more pre-

dictable than the LRM requires. Since the DELAY statement is dependent on the timing of the

runtime environment for implementation and the runtime environment is unique to each particu-

lar compilation system, the behavior of the DELAY statement is not predictable between various

implementations.

The ACEC will measure the difference between the delay requested by a program and the

actual delay provided by the runtime system. One approach to modeling the DELAY statement is

to simply add the worst case additional delay as determined by the ACEC to the requested delay.
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The ACEC measurements of the XD Ada DELAY implementation showed that the additional delay

observed could vary by as much as 4 4 7 1As. This type of variability will result in poor prediction of

schedulability of a task set which would otherwise be schedulable.

Based on the ACEC measurements, a model of the DELAY implementation of the XD Ada

runtime system was constructed. This model accounted for 14 3 pus of the DELAY statement vari-

ability. An additional 14 9 pas can be attributed to context switching leaving 15 5 ps still unaccounted

for. An analysis of the DELAY implementation of the XD Ada runtime system and the equation

developed to model it can be found in Appendix A.

3.6 Summary

This chapter described the research methodology used to construct and validate the

RATESIM model. It consisted of identifying the system tasks to be modeled and measuring those

tasks, constructing the user task sets and repeatedly comparing the behavior of a given user task

set on an actual machine to the behavior predicted by RATESIM. These comparisons provided the

basis for refining the RATESIM model in order to make it more accurate.

The ACEC was the method used to determine the execution times of the identified system

tasks. A summary of the ACEC and a summary of the analysis of the collected ACEC data was

presented. The system task models contained within RATESIM was a direct result of this analysis.

The user task sets used for validation of RATESIM consisted of three classes of tasks: peri-

odic/harmonic, periodic/non-harmonic, and periodic/harmonic with synchronization. The test bed

used during this research consisted of a Vaxstation III host and a MC68020 single board computer

serving as the target processor.
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IV. Model Requirements, Design, and Testing

This chapter describes the purpose and objectives of the RATESIM model. It documents

the requirements which resulted in the final design and presents the environmental and behavioral

models of RATESIM. Finally, the test plan and test results to verify the operational behavior of

RATESIM is presented.

4.1 Purpose and Objectives

The purpose of RATESIM is to model an embedded runtime system that will "execute" (i.e.

account for the CPU utilization of) a given task set and monitor the user task set interaction with

the runtime system.

The primary objective of the RATESIM model is to determine whether a user task set can

execute on a real processor and its associated runtime system without missing any of its deadlines.

This determination is based on (1) the user task set, (2) the execution time of key parameters of the

runtime system, and (3) the scheduling strategy of the runtime system. The secondary objective is

to provide insight into the user task set interaction with the runtime system. This insight will be

provided through an event history of the user task set's interaction with the runtime system and

statistics based on that interaction such as CPU time allocated to user tasks and user deadlines

missed.

4.2 Motivation

The motivation for building the RATESIM model came early in the research effort. Initially,

this research focused on constructing a general mathematical model for the blocking term (Bi) in

Section 2.1, Equation 2.1, Page 2-7. This equation is repeated below:

<i, l<i n, mn(2.,j- 1j• 1• +T J + i-) _< I

(k, 1) E R,
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where Cj and Tj are the execution time and period of task ri respectively, R, = {(k, 1) 1 1 < k < i,

1 = 1, ... , L[ J} and Bi is the worst case blocking time for ri.

The objective was to model blocking experienced from any source: the runtime system, other

user tasks, I/O, etc.

In order to construct such an equation, detailed data had to be gathered on the blocking

a task experiences while running on an actual processor. In order to gather that data without

introducing timing errors into the measurements, as can happen when using software to gather

such information, specialized hardware monitors are required. Unfortunately, that hardware was

not available.

The only other approach available was to use a software based method to gather such infor-

mation. The System Designers XD Ada runtime kernel included the ability to record the execution

path while executing in the kernel, but there is a three-fold problem associated with that: (1) no

time tags were attached to the execution trace, (2) even if there were, the overhead required to

generate such tags might be sufficient to render the timing information useless, and (3) the data

gathered from the kernel was output in real-time to the single board computer's serial port, thereby

introducing an I/O latency that certainly rendered the data useless.

Consideration was given to overcoming these problems by adding the time tag information

to the kernel execution trace and outputting the data to an area in memory for read out after

execution. Of course, the problem of ensuring the time tag did not introduce excessive overhead

would require that the approach be validated which, in turn, would require the specialized hardware

which was not available in the first place.

Another difficulty was that the Hartstone benchmark provides CPU utilization data on the

user task set only. The amount of unused CPU processing capacity that is system overhead and

the amount that is CPU idle time is not provided. CPU idle time could be determined by creating

a low priority user task which would run only when the CPU wasn't performing other tasks.
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This task would record the amount of time spent within it. This amount of time would be the

CPU idle time. The lack of this data meant that it would not be possible, using the Hartstone,

to determine what portion of unused CPU capacity was system overhead and use that data to

construct the mathematical equation for blocking. Data on system utilization of the CPU would

provide additional insight into a processor's runtime behavior and would be a valuable addition to

the Hartstone benchmark.

Given these difficulties, focus shifted to constructing a parameterized computational model

of a runtime system. Timing data for the individual system tasks was gathered using the ACEC

and existing documentation for the particular runtime system. The Hartstone benchmark served

to validate the model, since, in contrast to the ACEC, it provides timing information on tasks as

they execute under the runtime system. Additionally, since the computational model will control

the system clock, an event trace and statistics can be provided without introducing any timing

errors into the model. The event trace and timing statistics provide valuable insight into user task

set interaction with a runtime system.

4-.3 Model Requirements

The requirements for the RATESIM model provided the basis for the final design. The re-

quirements were divided into three types: input requirements, functional requirements, and output

requirements. These requirements are itemized below.

4.3.1 Input Requirements The RATESIM model must:

1) Have the ability to define a user task set large enough to represent those likely to be

encountered in an actual system.

2) Accept the following task parameters:

(a) worst case execution time,
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(b) period,

(c) dead!ine, and

(d) synchronization points.

3) Have the ability to specify an unlimited number of system tasks along with their asso-

ciated execution time and frequency.

4.3.2 Functional Requirements The model must:

1) Provide a 1 ps simulation time resolution.

2) Use a preemptive, event-driven, fixed priority scheduling algorithm,

3) Support the following tasking constructs: (a) task suspension, and (b) task synchro-

nization.

4) Provide the following runtime system functions: (a) context switch, and (b) system

clock update.

5) Assign priorities according to the rate monotonic priority assignment scheme.

6) Make a conservative determination of user task set schedulability (i.e. does not report

a task set can successfully meet all its deadlines when in fact it cannot).

4.3.3 Output Requirements The model must:

1) Provide a time ordered history of runtime events,

2) Provide the following statistics on each user task:

(a) cumulative execution time,

(b) number of deadlines met,

(c) number of deadlines missed,
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(d) time of first deadline missed,

(e) for the first deadline missed, the time execution associated with that deadline

was finally completed,

(f) cumulative time of late deadlines,

(g) number of preemptions suffered due other tasks,

(h) cumulative time of early deadlines,

(i) number of context switches,

(j) and number of delay expirations.

3) Provide the following statistics for each simulation run:

(a) simulation time,

(b) user cumulative task execution time,

(c) user deadlines met,

(d) user deadlines missed,

(e) context switches,

(f) delay expirations,

(g) system task execution time,

(h) idle time,

(i) percentage user task execution time,

Uj) percentage system task execution,

(k) percentage idle time,

(1) cumulative induced priority inversion time due to DELAY statement jitter.
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4.3.4 RATESIM Specification Specifications for RATESIM are contained in Table 4.1.

The context diagram shown in Figure 4.1 illustrates how RATESIM interacts with the outside

world. RATESIM requires the user to:

1) specify the user task set either by supplying the file where the task set is stored (File-

name) or entering the task set interactively (Task Parameters),

2) specify the file where a task set is to be saved to (Filename),

3) and provide the length of time to run the simulation (Simulation Time).

4.3.5 Environmental Model This section describes the environment in which the RATESIM

model exists. It specifies the purpose of RATESIM, the input data it requires, and the output data

it provides.

The following list is a comprehensive list of user inputs which RATESIM will respond to.

1) add a task,

2) delete a task,

3) edit a task,

4) run simulation,

5) rate monotonic equation,

6) display task set,

7) get task set from a file,

8) save task set to a file,

9) and invalid input.
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All of the above inputs are self-explanatory except rate monotonic equation. That causes

RATESIM to determine whether or not the task set is schedulable based on Equation 2.1, on

Page 2-7 (repeated below).

Vi, 1 i < , mm( =1 C 77,,- rtr•IT,, I•- + T-•)

(k, 1 ER,

where C3 and Tj are the execution time and period of task rj respectively, R, = {(k, 1) 11 < k < i,

=1,..., T J } and Bi is the worst case blocking time for Ti.

Its purpose is to provide a confidence check of the simulation results. The simulation results

and the calculated inequality should agree.

RATESIM provides to the user:

1) the result of the rate monotonic equation (Rate Monotonic Equation),

2) a chronological list of simulation events (Event History),

3) and the statistics gathered during the course of the simulation (Statistics).

4.4 RATESIM Design

This section describes the internal behavior of the RATESIM model. Eight entities are used

within RATESIM and Figure 4.2 illustrates the relationships between them.

1. System Statistics is a data structure that holds all the system-wide statistical data

collected during a given RATESIM simulation. It has no explicit relationship with any

other entity.

2. Ready Queue is a prioritized queue (based on the task period) of User Tasks. Ready

Queue is used during the execution of RATESIM to hold any User Task which is ready

to execute but has not yet been granted access to the simulation "CPU".
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3. System Queue is a prioritized queue (based on execution start time) of System Tasks.

System Queue is used during the execution of RATESIM to hold any System Task which

is ready to execute but whose execution time has not yet arrived.

4. System Task contains the parameters associated with a particular system task. Exam-

ples of the task parameters include task type and execution time. Note that a System

Task may be implicitly defined within RATESIM such as a context switch or system

clock update, or a System Task may be initiated by a User Task requesting a system ser-

vice such as task suspension (or DELAY), or an Ada rendezvous (ACCEPT or ENTRY

CALL). System tasks, in this version of RATESIM, are manually added by modifying

the RATESIM source code.

5. Rendezvous Queue is a prioritized queue (based on arrival time) of ACCEPT or ENTRY

System Tasks. Rendezvous Queue is used to hold an ACCEPT or ENTRY System Task

executed on behalf of the User Task that made the call, but which has not yet received

the corresponding ACCEPT or ENTRY call.

6. User Task contains all the parameters associated with a particular user-specified task.

Examples of task parameters include period, execution time, and deadline. As seen in

Figure 4.2 there is a one-to-one correspondence between an instance of User Task and

an instance of User Statistics.

7. User Statistics is a data structure that holds all the statistical data collected during a

given RATESIM simulation for a given User Task.

8. Rendezvous Ring is a prioritized ring (based on execution start time) of task synchro-

nization events (an entry call or accept). After the execution of a call or accept the ring

is rotated to point to the next synchronization event. After execution is complete for

the given user task period, the ring is reset to point to the first synchronization event

of the period
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4.4.1 RATESIM Transaction Diagram and Data Flow Model The transaction diagram in

Figure 4.3 shows the transactions that occur at the user interface level of RATESIM. Most of the

RATESIM functions depend on the Task Parameters (supplied by the user) which are used to

construct User Tasks and are then placed in the data store Task List. An external data store (e.g.

a file) Tasks is used to store User Tasks between executions of RATESIM.

Figure 4.4 shows the data flow during the simulation. First, all User Tasks are placed in

the store Ready Queue and the Simulation Run Flag is set to true. Placing all User Tasks on the

Ready Queue establishes the worst case phasing of the user task set. Initial (or implicit) System

Tasks such as a system clock update are read from the System Task store and placed in the store

System Queue. System Tasks are also placed on System Queue during the simulation depending

on what system services (e.g. task suspension, synchronization) are requested by a User Task.

The Simulation Time is obtained from the user and simulation begins. During the course of the

simulation user task statistics are updated and placed in the User Statistics store, the Event History

is produced, system statistics are saved in the System Statistics store, and the System Queue and

Ready Queue have user and system tasks added and removed as required.

For the Rate Monotonic Equation process, tasks are input from the User Task store (see Fig-

ure 4.5) and if the Simulation Run Flag is true, blocking information is read from the User Statistics.

Schedulable is set to true or false based on the result of the Rate Monotonic Equation.

Figure 4.6 shows the Do Simulation process at a more detailed level during the simulation.

Execute System Task takes a system task from the front of the System Queue and updates Sys-

tem Statistics, outputs an event (Event History) and may (depending on the system task) place

a User Task on the Ready Queue. Similarly, Execute User Task takes a user task from the front

of the Ready Queue and may (depending on the the user task) take a system task from the Ren-

dezvous Queue. It then updates User Task Statistics/System Statistics, records an event (Event His-

tory) and may (again depending on the user task) place a System Task on the System Queue or
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back on the Rendezvous Queue. Calculate Statistics occurs at the end of the simulation and it

simply gathers the user task and system s~atistics generated during the simulation and outputs

them to the user.

4.4.2 Flow Charts Much of the control flow in RATESIM occurs at the user interface level

and is largely routine and uninteresting. Therefore, the following section will presents details about

the Do System Task, Do User Task, and Do Idle processes within RATESIM. These processes are

explained further in the sections below.

4.4.2.1 Do System Task RATESIM operates in the process Do System Task while

there is a system task which has a start time less than or equal to the current simulation time.

Two data structures define this state, System Task Queue and Time. System Task Queue is a

prioritized queue of System Tasks with the start time of the task determining the priority. Time is

simply an integer which contains the elapsed simulation time in microseconds.

When RATESIM begins, there is only one system task on System Task Queue, Clock Update.

This system task is the only task that will execute independent of a user task requesting a system

service. The other system tasks, Context Switch, Delay, Rendezvous Call, and Rendezvous Accept,

are only initiated upon a user task request for the service and are explained below (see Figure 4.7).

1. Clock Update: When a Clock Update is executed, the following things occur:

(a) the task is removed from the System Task Queue,

(b) the clock update event is recorded,

(c) since this is a periodic system task, the next Clock Update execution is added

to the System Task Queue,

(d) and finally Clock Update is "executed" by adding the Clock Update execution

time to Time.
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2. Context Switch: During a Context Switch, Do System Task performs the following

actions:

(a) the context switch event is recorded,

(b) and Context Switch is "executed" by adding the Context Switch execution

time to Time.

A context switch can be modeled in many ways. One method of modeling it is to add

twice the context switch execution time (once for switching into, then out of the user

task) to the task execution time (8). Therefore, it becomes indistinguishable from the

user task execution time. Another way to model it is as a system task that is executed

each time the task begins execution. The distinction is that when the context switch is

simply added to the user execution time, accounting for the time spent doing context

switches is no longer possible. Therefore, RATESIM models a context switch as a

system task that is executed each time the task begins execution. This design decision

permitted cleaner design since it clearly separated what was user task utilization of the

CPU and what was overhead (i.e. a system task).

A by-product of this design decision is that the Context Switch task does not involve

removing a task from the System Task Queue. That is, rather than a scheduled system

task execution, a user task requests the context switch when it begins its execution and

the system service is immediately performed.

A Delay is the result of a User Task requesting suspension. The User Task that requested

the suspension is saved by the Delay system task so that when the system task is

executed, the User Task requesting the suspension can be rescheduled.

3. Delay: When a Delay is executed, the following things occur:

(a) the user task requesting the suspension is rescheduled on the Ready Queue,
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(b) the Delay task is removed from the System Task Queue,

(c) the delay event is recorded,

(d) Delay is "executed" by adding the Delay execution time to Time,

(e) if, after updating Time, any other Delays on System Queue have execution

start times less than or equal to Time, they are also executed but at a signif-

icantly smaller execution time penalty.

This is an assumed optimization generally implemented in most runtime systems. That

is, if some other task's delay will expire within the amount of time it takes to "wake

up" a previous task's delay expiration, the other task will be rescheduled at a reduced

penalty. In the case of the XD Ada runtime environment, the reduced penalty was 4 ps.

4. Rendezvous Call: A Rendezvous Call is executed when a User Task (the calling task)

requests synchronization with another task (the accepting task). A single ASCII char-

acter is used to identify the Accept entry the calling task wants to synchronize with.

Timed calls are not supported. That is, if a corresponding Accept (from the accepting

task) is not executed, the calling task will be suspended forever. Although it is a system

task, a Rendezvous Call will never be found on the System Task Queue. It is held on

the Rendezvous Queue until the corresponding Accept is executed.

5. Rendezvous Accept: A Rendezvous Accept is executed when a User Task (the accepting

task) has accepted synchronization from the calling task. Note that until both the

Rendezvous Call and the corresponding Rendezvous Accept have been executed, the

Call or Accept will reside in the Rendezvous Queue. After both have been executed,

a Rendezvous Accept system task will be placed on the System Task Queue. Upon

executing a Rendezvous Accept the following will occur:
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(a) the accepting task's priority will be changed to the higher of its own priority

or the calling task priority,

(b) the accepting task will be rescheduled,

(c) the Rendezvous Accept task is removed from the System Task Queue,

(d) the rendezvous event is recorded,

(e) and Rendezvous Accept is "executed" by adding the Rendezvous Accept ex-

ecution time to Time.

RATESIM enters Do User Task when the next system task to execute has a start time greater

than Time. Two data structures define Do User Task , Ready Queue and Time. Time is the same

data structure as described in the previous section. Ready Queue is a prioritized queue of User Tasks

with priorities assigned according to RMA.

When Do User Task begins, there are zero or more User Task's on the queue. There may

be zero tasks on the queue for one of two reasons: (1) no user tasks were defined, or (2) all user

tasks that were defined have requested a system service and are either on System Task Queue or

Rendezvous Queue. If there are zero User Task's on the queue RATESIM enters the Do Idle state

(described below) until such time as the next System Task is executed.

In Do User Task, the following sequence of events occur (see Figures 4.8 and 4.9):

1) CHECK NEXT USER TASK (1): if Next System Task Start = TIME or Ready Queue

is empty then no User Task is executed.

2) DO CONTEXT SWITCH (2): a Context Switch system task is executed unless this

User Task is being executed twice in a row without a different User Task or System Task

being executed in between.

This situation could occur immediately after task synchronization when both tasks

that were in rendezvous are rescheduled. The accepting task (which was executing)
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might still be the highest priority User Task and begin execution again. In this

situation, no Context Switch system task is initiated.

3) BEGIN EXECUTION (3): the time available for the User Task execution is determined

(the next system task start time minus the current time).

4) the User Task is removed from the Ready Queue.

5) a User Task Execution Begin event is recorded.

6) ADJUST AVAILABLE TIME (4): if the User Task is in the middle of an Accept

execution, the time available for User Task execution is adjusted to be the smaller of

the current available time (as determined in item ii above) or the Accept execution

time.

7) EXECUTE TASK (5): the User Task is "executed".

User Task execution contains many substates which are described in Section 4.4.2.2.

8) EXECUTION END (6): a User Task Execution Stop event is recorded.

9) REQUEST DELAY (7): if the User Task has completed its execution time for this

period, a Deadline Met or a Deadline missed event is recorded and the User Task

initiates a task suspension system task (Delay).

10) RESCHEDULE (9): if the User Task has not completed its execution time for this

period, it is rescheduled.

11) SEARCH FOR ENTRY OR ACCEPT (8): if the User Task has executed a Ren-

dezvous Entry or Rendezvous Accept the Rendezvous Queue is searched for a corre-

sponding entry or accept, and a Rendezvous Event is recorded.

CREATE RENDEZVOUS SYSTEM TASK (10): if the corresponding entry is

found, the User Task initiates a Rendezvous Accept system task.
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PLACE ON RENDEZVOUS QUEUE (11): if not found, the User Task is placed

on the Rendezvous Queue to await the corresponding entry or accept.

12) UPDATE NEXT SYSTEM TASK START (12): finally, since User Task's can initiate

a system task which may have a start time earlier than the current next system task

start time, the next system task start time is updated.

4.4.2.2 Execute User Task The Execute User Task state (see Figure 4.10) is part of

the Do User Task state. Due to the many substates within Execute Task, it is described in detail

in this section.

When Execute User Task begins, the following information is passed to it: (1) Available Time

(for task execution) and (2) The Task (the task to execute). The following sequence of events then

occurs (see Figure 4.10):

1) CHECK AVAILABLE TIME (5.1): it is determined whether a rendezvous (entry call

or accept) will occur during this execution.

2) Available Time is checked to determine: (a) if it is zero or less, (b) whether The Task

can complete its execution within Available Time.

Available Time could be zero or less if the Context Switch execution time used up

all the execution time budget. If so, no execution time is allotted to The Task.

If The Task will complete its execution within Available Time, an execution com-

plete flag is set.

3) ALLOCATE EXECUTION TIME (5.2): if a rendezvous will occur during this execution

time, sufficient execution time is allocated to The Task to reach the rendezvous point,

otherwise up to Available Time execution time is allocated to The Task.
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4) ALLOCATE ACCEPT TIME (5.3): if The Task is in the process of executing an Accept

(it was already in rendezvous when execution began), then execution time is allocated

to the Accept execution time.

5) RECORD STOP ACCEPT (5.4): if the Accept has been allocated sufficient execution

time to finish, a Stop Accept event is recorded and the task that placed the entry call

is rescheduled.

6) RECORD EXECUTION STOP (5.5): a User Task Execution Stop event is recorded.

7) RECORD EXECUTION TIME REQUIRED (5.6): and finally an Additional User Task

Execution Time Required event is recorded.

4.4.2.3 Do Idle When Time is less than the next system task start time and there are

no User Tasks to execute, RATESIM transitions to Do Idle and an Idle event is recorded. Do Idle

is terminated when the next system task start time is equal to Time.

4.5 Testing

This section addresses the testing RATESIM underwent to ensure proper operation. Con-

trasted with validation (discussed in the next chapter) which attempts to ensure that the RATESIM

model design accurately simulates an embedded runtime system, testing ensures the proper opera-

tion of the RATESIM program.

The objective in testing RATESIM was to give a reasonable assurance that the program would

not abort execution abnormally due to invalid user input or lack of operating system memory.

Additionally, to the extent that data integrity checks were performed by RATESIM, the objective

was to ensure that those checks operate correctly.

The data integrity checks performed by RATESIM to ensure user entered data is of the proper

form does not include all checks necessary to ensure the integrity of the user task parameters input
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to RATESIM. For instance, when inputing rendezvous events, RATESIM depends on the user to

input them sequentially from the earliest start time to the latest. If the user does not, the result

will be unpredictable. The additional data integrity checks that need to be added to the RATESIM

program are listed in Table 4.3.

4.5.1 Test Cases This section enumerates the test cases that were used to test RATESIM

and the results of those tests. Data integrity tests that ensure proper operation of RATESIM but

currently rely on proper user input are listed, but the test results are marked N/I (not implemented).

Three classes of test were performed: (1) user input, (2) data integrity, and (3) stress tests.

User input tests will ensure that no user input will cause the program to abort abnormally. Data

integrity tests will ensure that the data input is in a form that RATESIM is expecting. Stress tests

will ensure that RATESIM will perform as designed at the limits of its specifications.

4.5.2 Event History Example The following is an sample of the output of RATESIM's event

history. System Tasks events are in uppercase for easier identification. Table 4.5 lists all the events

recorded by RATESIM and the information reported when those events occur such as start time,

stop time, and execution time.

User Task Task 4(PID 2) started executing at 6385952.
User Task Task 4(PID 2) stopped executing at 6388944.

Execution time : 2992 us.
User Task Task 4(PID 2) still requires 0 us of execution time.
User Task Task 4(PID 2) met its deadline of 6400136 at 6388944.

It was 11192 us early.
User Task Task 4(PID 2) requested a DELAY of 11192 us.

Actual DELAY will be : 11213 us.

SYSTEMTASK COITEXTSWITCH FROM 6388944 TO 6389093.
EXECUTION TIME : 149 US.

User Task Task 2(PID 4) started executing at 6389093.
User Task Task 2(PID 4) stopped executing at 6392141.

Execution time : 3048 us.
User Task Task 2(PID 4) still requires 5817 us of execution time.
SYSTEM-TASK A-DELAY FROM 6392141 TO 6392300.
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EXECUTION TIME : 159 Us.
DELAY EXPIRATION OF Task 5(PID 1).
SYSTEIMTASK CONTEXT-SWITCH FROM 6392300 TO 6392449.

EXECUTION TINE : 149 US.

User Task Task 5(PID 1) started executing at 639244Z.
User Task Task 5(PID 1) stopped executing at 6393945.

Execution time : 1496 us.
User Task Task S(PID 1) still requires 0 us of execution time.
User Task Task 5(PID 1) met its deadline of 6400136 at 6393945.

It was 6191 us early.
User Task Task 5(PID 1) requested a DELAY of 6191 us.

Actual DELAY will be : 6175 us.

SYSTE._TASK CONTEXT_SVITCH FROM 6393945 TO 6394094.
EXECUTION TIME : 149 US.

User Task Task 2(PID 4) started executing at 6394094.
User Task Task 2(PID 4) stopped executing at 6399911.

Execution time : 5817 us.
User Task Task 2(PID 4) still requires 0 us of execution time.
User Task Task 2(PID 4) met its deadline of 6432624 at 6399911.

It was 32713 us early.
User Task Task 2(PID 4) requested a DELAY of 32713 us.

Actual DELAY will be : 32825 us.

SYSTEM-TASK COXUTEIXTSVITCH FROM 6399911 TO 6400060.
EXECUTION TIME : 149 US.

User Task Task 1(PID 5) started executing at 6400060.
User Task Task I(PID 5) stopped executing at 6400120.

Execution time : 60 us.
User Task Task 1(PID 5) still requires 23878 us of execution time.
SYSTEKTASK A-DELAY FROM 6400120 TO 6400279.

EXECUTION TIME : 159 US.
DELAY EXPIRATION OF Task 5(PID 1).
SYSTEM-TASK I.DELAY FROM 6400279 TO 6400283.

EXECUTION TIME : 4 US.
DELAY EXPIRATION OF Task 4(PID 2).
SYSTEM-TASK A-DELAY FROM 6400283 TO 6400287.

EXECUTION TIME : 4 US.
DELAY EXPIRATION OF Task 3(PID 3).
SYSTEM-TASK CONTEXTSWITCI FROM 6400287 TO 6400436.

EXECUTION TIME : 149 US.

User Task Task 5(PID 1) started executing at 6400436.
User Task Task 5(PID 1) stopped executing at 6401932.

Execution time : 1496 us.
User Task Task 5(PID 1) still requires 0 us of execution time.
User Task Task 5(PID 1) net its deadline of 6408258 at 6401932.

It was 6326 us early.
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User Task Task 5(PID 1) requested a DELAY of 6326 us.
Actual DELAY will be : 6500 us.

SYSTEM-TASK CONTEXTSWITCH FROM 6401932 TO 6402081.
EXECUTION TIME : 149 US.

User Task Task 4(PID 2) started executing at 6402081.
User Task Task 4(PID 2) stopped executing at 6405073.

Execution time : 2992 us.
User Task Task 4(PID 2) still requires 0 us of execution time.
User Task Task 4(PID 2) met its deadline of 6416380 at 6405073.

It was 11307 us early.
User Task Task 4(PID 2) requested a DELAY of 11307 us.

Actual DELAY will be : 11375 us.

SYSTEM-TASK CONTEXTSWITCH FROM 6405073 TO 6405222.
EXECUTION TIME : 149 US.

User Task Task 3(PID 3) started executing at 6405222.
User Task Task 3(PID 3) stopped executing at 6406400.

Execution time : 1178 us.
User Task Task 3(PID 3) still requires 4806 us of execution time.
SYSTEM-TASK CLOCK-UPDATE FROM 6406400 TO 6406415.

EXECUTION TIME : 15 US.
SYSTEMTASK CONTEXT_SVITCH FROM 6406415 TO 6406564.

EXECUTION TIME : 149 US.

User Task Task 3(PID 3) started executing at 6406564.
User Task Task 3(PID 3) stopped executing at 6408432.

Execution time : 1868 us.
User Task Task 3(PID 3) still requires 2938 us of execution time.
SYSTEM-TASK A-DELAY FROM 6408432 TO 6408591.

EXECUTION TIME : 159 US.
DELAY EXPIRATION OF Task 5(PID 1).
SYSTEM-TASK CONTEXTSWITCH FROM 6408591 TO 6408740.

EXECUTION TIME 149 US.

User Task Task 5(PID 1) started executing at 6408740.
User Task Task 5(PID 1) stopped executing at 6410236.

Execution time : 1496 us.
User Task Task 5(PID 1) still requires 0 us of execution time.
User Task Task 5(PID 1) net its deadline of 6416380 at 6410236.

It was 6144 us early.
User Task Task 5(PID 1) requested a DELAY of 6144 us.

Actual DELAY will be : 6175 us.

SYSTEMTASK CONTEXTSVITCH FROM 6410236 TO 6410385.
EXECUTION TIME : 149 US.

User Task Task 3(PID 3) started executing at 6410385.
User Task Task 3(PID 3) stopped executing at 6413323.
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Execution time : 2938 us.
User Task Task 3(PID 3) still requires 0 us of execution time.
User Task Task 3(PID 3) met its deadline of 6432624 at 6413323.

It was 19301 us early.
User Task Task 3(PID 3) requested a DELAY of 19301 us.

Actual DELAY will be : 19338 us.

SYSTEM-TASK CONTEXT-SWITCH FROM 6413323 TO 6413472.
EXECUTION TIME : 149 US.

User Task Task I(PID 5) started executing at 6413472.
User Task Task 1(PID 6) stopped executing at 6416411.

Execution time : 2939 us.
User Tank Task I(PID 5) still requires 20939 us of execution time.

4.6 Summary

The need for specialized measurement hardware or expensive simulator development to char-

acterize a single runtime environment motivated the development of a software-based, parame-

terized model that could simulate various runtime environments. The purpose of the RATESIM

model is to simulate an embedded runtime system that will execute a given task set and monitor

the user task set interaction with the runtime system. The RATESIM model has two objectives:

(1) to determine whether a user task set can execute on a real processor with its associated run-

time system without missing any of its deadlines, and (2) to provide insight into the user task set

interaction with that runtime system. This chapter also presented the requirements and design of

the RATESIM program. In addition, the testing RATESIM underwent was discussed.
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Table 4.1. RATESIM Specification

Item [ Range

User Tasks 0 to 99
System Tasks no limit
Simulation Time (in ps) 0 to 2,100,000,000 (0 to 35 minutes)
Synchronization Events (Entry Call or Accepts) 0 to 20 per user task
Synchronization Point Names single alpha-numeric character

Tasks Ratesim

FiRnm

Ta* Pwamt"

Siwmidin Tim.

PAM. Mancrmlo Equbo

User

Figure 4.1. RATESIM Context Diagram

Table 4.2. Test Cases - User Input
[Test Objective Result

Main Menu/Valid Input accept valid menu choice pass
Main Menu/Invalid Input reject invalid menu choice pass
Numeric Input/Valid Input accept valid numeric input pass
Numeric Input/Invalid Input reject invalid or out of range numeric input pass
Text Input/Valid Input accept valid text pass
Text Input/Invalid Input reject strings which are too long pass
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Queue Task

user 11 User

Task Saitu

User j1 Rendezvous

Te•k Ring

Figure 4.2. RATESIM Entity Relationships

Table 4.3. Test Cases - Data Integrity
Test I Objective [Result
User Task Period ensure period > execution time pass
User Task Deadline ensure deadline > execution time and < period pass
Rendezvous Order rendezvous points sequential from earliest to latest N/I
Rendezvous Start 0 < start time < execution time N/I
Rendezvous Points rendezvous events do not overlap N/I
Accept Execution Time - 1 ensure accept execution time + accept start time N/I

< execution time
Accept Execution Time - 2 accept execution time > 0 N/I
Simulation Time < 0 reject invalid simulation time pass
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Figure 4.3. Transaction Diagram

T~able 4.4. Test Came - Stress Tests____
Test [ Objlective J-R-esu~lt]
User Tasks =99 *accept maximum #of user tasks pass

Simulation Time - 1 proper operation at maximum simulation time pass
Simulation Time - 2 proper operation at minimum simulation time pass

4-23



User Task System Task

5.3

InitilizeInitialize
SimultionSystem Queue

User To~sInkiai Symbam

Re Queue St Queue

Uew ookeA Syatam Task
N" Lh T~kNed Sy@sm Taok

User Statistics system Stcs

Ewet Hi•ay

Figure 4.4. Level 2 DFD

Useer Tasklulo unFa

Unr~n SWWO AMR

Figure 4.5. Level 2 DFD

4-24



5.2.3

Calculate
Statistics

Ra Sao"" _______
Dol UWa SfIMcsU

Sw: RenezouSCm

Figure m 4..D ythem Taaku

NW&/Mn ~4*25



1
Get Next
User Task

/=PrOAPA Talk2

Nedcm. Syms a r , /•u,.rmNt Trk S1Ml a This NW• 8"Wn Tank Man l/a Thm Do

Context> Switch

.r.vbW Talk

Adjust Begin
Available Time Execution

I FNft Exemaift DA*PW

5
Execute

Task Enaftn No Oanift
0 - TO8a

6 Wa•ue No= c T8

Execution To 9

End

To 7

Figure 4.8. Do User Task
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Figure 4.9. Do User Task(cont)
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Table 4.5. RATESIM Events
Event Event Information Supplied

Simulation.Begin NONE
Simulation-End NONE
User-TaskExecution.Start User Task Name, User Task Process Identifier (PID), Execution

Start Time
UserTaskExecution-Stop User Task Name, User Task Process Identifier (PID), Execution

Stop Time, Execution Time
UserTaskExecution User Task Name, User Task Process Identifier (PID),

Execution Time Still Required
UserDeadline.Met User Task Name, User Task Process Identifier (PID), Current

Deadline, Execution Complete Time, Microseconds Early
UserDeadline-Missed User Task Name, User Task Process Identifier (PID), Current

Deadline, Execution Complete Time, Microseconds Late
SystemnTaskExecution System Task Name, Start Time, Stop Time, Execution Time,

*(User Task Name, User Task Process Identifier (PID))
UserTaskRescheduling NONE
Idle Start Time, Stop Time, Idle Time
Delay-Request User Task Name, User Task Process Identifier (PID), Delay

Request, Actual Delay
CallRequest User Task Name, User Task Process Identifier (PID),

Time of Call
Accept-Request User Task Name, User Task Process Identifier (PID),

Time of Accept
Stop-Accept Called Task Name, Called Task Process Identifier (PID),

Calling Task Name, Calling Task Process Identifier (PID),
Rendezvous Complete Time

BAD-TIME Current Time
* If a Delay request - User Task requesting the Delay
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V. RATESIM Validation

The test cases that the RATESIM model was validated against were described in Chapter III.

To summarize: the ACEC program was used to collect data on the target runtime environment such

as context switch time, DELAY expiration jitter, and other pertinent system tasks. The ACEC

data supplied the parameters for the system tasks modeled by RATESIM. Finally, various user task

sets were constructed (based on the SEI Hartstone benchmark) and run on both the RATESIM

model and the target hardware. The results were compared to further refine the accuracy of the

RATESIM failure prediction.

The accuracy of the results obtained from the ACEC, the SEI Hartstone Benchmark, and

manual code analysis of portions of the runtime source code directly influenced the validation of

RATESIM. If these results are not valid, then the RATESIM model cannot hope to be valid.

However, establishing the accuracy of these various measurement tools is not within the scope of

this research and so the validation of RATESIM is based on the assumption that the measurement

tools used to validate it are correct.

35Before presenting the Hartstone test cases and results used to validate RATESIM as a

whole, the validation of some individual components of RATESIM is discussed. They are: the

DELAY model (task suspension), system clock update, the scheduling algorithm, and context

switch/rendezvous (task synchronization).

5.1 Delay Model

The ACEC test suite measures the runtime environment to determine the additional amount

of time (Ta) a user task is suspended (over and above the requested delay) versus the suspension

time the user task requested (Tv). The tests, as written, request DELAYs (Tr) of

0 pjs, 1 p•, 10 j5s, 100 18,..., 100000ps. These tests determined that T. ranged from 208.40 to

446.8O0pa for a given Tr. This effect, DELAY statement jitter, is a significant source of blocking to
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user tasks. A higher priority task can, in effect, be prevented from executing when it is otherwise

eligible to.

Note that this particular source of blocking, on the target hardware used during this research,

is due to the resolution of the underlying hardware timers and not due to system resource constraints

or a particular scheduling strategy. This being the case, it is not possible to generalize the behavior

of a runtime system DELAY unless the target hardware uses the same design. Therefore, RATESIM

embedded the DELAY jitter algorithm in an Ada function call. This facilitates the support of

various DELAY implementations by encapsulating the DELAY jitter effect in one area of the

RATESIM model.

Initially, RATESIM simply added the worst case T. to Tr to calculate the worst case length of

a user task DELAY request. This approach resulted in an extremely conservative prediction of task

set failure. RATESIM would predict a task set failure well before the actual failure (as observed on

the target hardware). Although a conservative prediction of task set failure was a design criteria

for RATESIM, the results obtained were too conservative. It was necessary, therefore, to identify

the sources of the additional delay and attempt to model their behavior so as to ultimately achieve

a more accurate prediction. The details of the development of the DELAY model that was finally

used is found in Appendix A and is summarized below.

In order to construct a DELAY model, more data than was provided by the ACEC was

needed. Therefore, the ACEC delay test was modified to request DELAYs starting at O0js, and

increase the DELAY request value by a specified amount such as 10s, 10ps, etc. The data collected

is presented in tabular form in Appendix A, Section A.6.

The DELAY implementation of the runtime system (System Designer's XD Ada) converted

the user task DELAY request twice before the hardware timers were set with a DELAY value. First,

the DELAY request was converted from type REAL to type DURATION. Next it is converted from

type DURATION to SYSTEM.TICK. The error introduced due to these conversions is accounted

5-2



for in the DELAY model used in RATESIM. By taking the conversion error into account, the

DELAY statement jitter was reduced from a maximum of 446.80ps to a maximum of 304.40ps.

Of the remaining 30 4 .4 0ps, 149ps can be attributed to the task context switching and is assumed

constant. Therefore, the maximum DELAY statement jitter is further reduced to 155.40ps. This

remaining jitter is added to each DELAY request. The reduction of DELAY statement jitter means

that up to 291. 4 /is of unnecessary blocking in the RATESIM model (depending on the DELAY

request) is avoided and results in a more accurate prediction while still preserving the conservative

nature of that prediction.

5.2 System Clock Update

The updating of the system clock is a fundamental function provided by any embedded

runtime environment that is used in the real-time domain. Although the execution time of this

function is typically very short, it nevertheless consumes CPU time, and given the correct task

phasing, could cause a user task to miss a deadline. Therefore, it was important to account for this

system task in RATESIM.

The ACEC does not provide a test to determine the amount of CPU time a clock update

consumes. However, the amount of source code associated with the clock update function was

small enough to perform a manual analysis of the code and determine the worst case execution

time based on the published worst case instruction execution times of the MC68020 and the worst

case execution path in the source code. This analysis assumed that the clock update function was

never suspended due to higher priority interrupts. That is, once the clock update began, it executed

to completion.

Appendix B contains the analysis of the clock update function. The execution time of the

XD Ada clock update was determined to be 15 .4 ps every 41,600ps.
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5.3 Scheduling Algorithm

The scheduling algorithm used in RATESIM models a preemptive, event-based, fixed priority

scheduler. Preemptive means that a higher priority task that is ready to execute will cause the

suspension (or interruption) of the execution of any user task with a lower priority. Event-based

means that the scheduling decisions are made at the time a given event occurs (i.e. a DELAY

expiration or the completion of an interrupt service routine). Fixed priority means that the priority

of user tasks do not change during their execution. One exception to the fixed priority rule occurs

when two user tasks rendezvous (or synchronize). In this case, the tasks will execute at the higher

of the two task's priorities.

In contrast to the other sections within this chapter which contain specific data and analysis

on the particular aspect of the behavior in question to demonstrate its validity, this section takes a

different approach. It will rely on the descriptions provided below coupled with the results of the

Hartstone benchmark (see Section 5.5) as validation of correct behavior.

To the reader who would like to inspect the code within RATESIM which implements the

scheduling behavior described above, the task priorities assignment code is contained in the proce-

dure Utility-Body, procedures ADD TASK, and EDIT TASK. Scheduling decision code is embedded

throughout the code contained in the procedure Simulate-Body.

5.3.1 Task Priorities User tasks priorities are assigned based on RMA. Thus, higher rate

tasks are assigned a higher priority. The number of priority levels is equal to the number of tasks

in the user task set. That is, no two tasks that would otherwise have different priorities will be

forced to share the same priority due to a fixed number of priority levels.

Tasks having the same priority (due to having the same rate) are scheduled on a FCFS basis.

Further, a task that is preempted before it completes its execution for a given period will be placed

ahead of user tasks with the same priority. This prevents tasks of the same priority being served
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on a round-robin basis and preserves the first-come-first-served (FCFS) nature of the scheduling

algorithm for tasks of the same priority.

System tasks are modeled as a source of blocking to user tasks. They have no assigned

priority, and will execute to completion once started.

5.3.2 Scheduling Decisions Scheduling decisions, for user tasks, are made after the comple-

tion of every system task execution (except the context switch). If there are more system tasks

ready to execute, scheduling decisions for the ready user tasks are held off until such time that

no more system tasks are ready. System tasks that result in a scheduling decision after execution

include:

1) clock update,

2) DELAY expiration,

3) Rendezvous Call,

4) and a Rendezvous Accept.

System tasks are executed on a FCFS basis. Even though they have no assigned priorities to

distinguish importance or urgency among other system tasks, once they are ready to execute, they

preempt the current user task and then be modeled as a low priority user task which is blocking

all other user tasks in the task set.

5.4 Contezt Switch and Rendezvous

The context switch and the rendezvous execution times are measured directly by the ACEC.

Validation of RATESIM behavior for these two system tasks is limited to a description of the

method in which the data was collected (19:A126-A130). ACEC output for the context switch and

rendezvous tests can be found in ACEC pretest report (Appendix E).
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5.4.1 Context Switch The context switch is measured within the ACEC using the following

method (ACEC test problems - tkilftask_60, tkiLftask.61, tkif.task_62):

a) measure the time required to increment a counter - INCREMENT-COUNTER,

b) measure the time required to execute a FOR loop NUMBER.OF.CALLS times (FOR

loop body contains a DELAY 0.0) - ZERO-DELAY,

c) reset the counter,

d) measure the time required to execute a FOR loop NUMBERJOFCALLS times (FOR

loop body contains a DELAY 0.01) - NONZERO-DELAY,

e) execute the FOR loop in item ii above NUMBER-OFCALLS times in a high-priority

task, while a lower priority task increments the counter,

f) save the counter value in SAVEINCREMENTCOUNT,

g) and finally, the estimated context switch time is:

NONZERO-DELAY- ZERO-DELAY-INCREMENTCOUNTERx SAVE-JNCREMENT-COUNT
NUMBER-OFCALLSx 2

The variable NONZERO..DELAY contains the following system overhead components: con-

text switch time and the delay overhead. The variable ZERO-DELAY contains the system over-

head component for the delay. The variable INCREMENT-COUNTER and

SAVE-INCREMENTCOUNT contains the CPU time used when not executing the high pri-

ority task NONZERO.DELAY. Finally, NUMBEROF-CALLS contains the number of times

NONZERO-DELAY was called and therefore, INCREMENT-COUNTER. After subtract-

ing out the delay overhead and the time spent in the lower priority task, then dividing by the

NUMBER.OFCALLS x 2 (the number of context switches into NONZERO-DELAY and

INCREMENT-COUNTER) the result will be an estimate of the context switching time.
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5.4.2 Rendezvous Two measurements are made for simple Ada rendezvous in the ACEC:

(1) the task making the entry call arrives first, and (2) the task doing the accept arrives first (ACEC

test problems tkdlf-task_03, tkilftask_23). The ACEC does this by assigning a higher priority to

the task which is supposed to arrive first.

The following is the code fragment of the test tklfJtask_03 (tkl~ftask-23 is similar):

TASK resource IS
PRAGNA priority( zg-globl.priority-.1 );

ENTRY request;
ENTRY release;

END resource;

TASK BODY resource IS
BEGIN

LOOP
ACCEPT request;
ACCEPT release;

END LOOP;
END resource;

TASK BODY main IS
BEGIN

FOR i IN I .. 10 LOOP
resource. request;
resource. release;

END LOOP;

It is possible, in a given runtime environment, that the execution time of a rendezvous will

differ depending on whether the calling or the accepting task arrives first. RATESIM uses the

greater of the two execution times.

5.5 Test Cases

The criteria for success when running the validation test cases consisted of two factors: (1)

that RATESIM would predict the failure of the user task set prior to actual failure observed when
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executing on the target hardware, and (2) that the failure mode (or manner in which the task set

failed) would be similar. For example, if the user task set's failure on the target hardware was

manifest by Task 5 missing ten deadlines, RATESIM should also predict that the failure would be

from Task 5 missing deadlines.

The failure modes cited in the tables below are the failure modes from the first failure of the

schedule according to RATESIM. Included in the raw data in Appendix C is data from RATESIM

using the same task parameters that caused a failure using the Hartstone. Also note that Hartstone

includes the number of deadlines skipped. Skipped deadlines occur in Hartstone when a task

misses a deadline and attempts to "catch up" by load shedding (skipping deadlines) until the task

determines it is possible to meet the next deadline. RATESIM does not incorporate load shedding

since that is the responsibility of the user task. A runtime environment typically has no knowledge

of whether or not an application task has missed a deadline. Therefore, no skipped deadlines will

appear in the RATESIM failure modes.

A total of eight validation tests were run on RATESIM. The first three contained harmonic

task sets, the next three contained non-harmonic task sets, and the final two had a harmonic task

set that included synchronization. A summary of the results is contained in the following sections.

The actual output of the Hartstone and RATESIM programs is contained in Appendix C.

The Hartstone benchmark is designed such that the parameter varied during the individual

experiments (workload or task frequencies) is varied at a given step size. In all the tests, the smallest

step size possible was used. Table 5.1 shows the parameter varied for each Hartstone experiment.

_________ Table 5.1. Hartstone Experiments
Hartstone

Experiment Parameter Varied
1 Increase the frequency of the highest priority task
2 Increase the frequency of all tasks
3 Increase the workload of all tasks
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5.5.1 Task Sei A The purpose of this task set was to validate the behavior of RATESIM

when executing periodic, harmonic user tasks. In all experiments (see Table 5.2) RATESIM suc-

cessfully predicted the failure of the task set prior to actual failure. Note that all the predictions

RATESIM made fell within the step interval that the Hartstone was able to achieve. Additionally,

in all experiments, except experiment 1, the RATESIM and Hartstone failure modes were similar.

The RATESIM failure mode for experiment 1 was similar to Hartstone, but incomplete. It

did not show any deadlines missed for the lowest priority task, Task 1. However, using the same

task parameters that caused the Hartstone benchmark to fail, the failure mode is both similar and

complete: Task 5 - 1 missed, Task 1 - 13 missed.

Table 5.2. Test Results - Task Set A - Periodic/Harmonic
Hartstone Hartstone RATESIM

ment Periodi Kilo- T Periodj Kilo- Period Kilo-1 Periodi Kilo-Experi- Passed Failed Passed Failed

Number Task (pa) I Whets (p) Whets () Whets (ps) Whets

1 Task 5 2500 2 2404 2 2458 2 2457 2
Task 4 62500 4 62500 4 62500 4 62500 4
Task 3 125000 8 125000 8 125000 8 125000 8
Task 2 250000 16 250000 16 250000 16 250000 16
Task 1 500000 32 1 500000 32 500000 32 500000 32
Failure Mode (Deadlines):
Hartstone - Task 1:10 missed, 10 skipped; Task 5: 1 missed
RATESIM - Task 5: 2 missed

2 Task 5 8224 2 8013 2 8123 2 8122 2
Task 4 16447 4 16026 4 16246 4 16244 4
Task 3 32895 8 32051 8 32492 8 32488 8
Task 2 65789 16 64103 16 64984 16 64976 16
Task 1 131579 32 128205 32 129968 32 129952 32
Failure Mode (Deadlines):
Hartstone - Task 1: 1 met, 39 missed, 39 skipped
RATESIM - Task 1: 1 missed

3 Task 5 31250 17 31250 18 31250 17.90 31250 17.91
Task 4 62500 19 62500 20 62500 19.90 62500 19.91
Task 3 125000 23 125000 24 125000 23.90 125000 23.91
Task 2 250000 31 250000 32 250000 31.90 250000 31.91
Task 1 500000 47 500000 48 500000 47.90 500000 47.91
Failure Mode (Deadlines):
Hartstone - Task 1:10 missed, 10 skipped
RATESIM - Task 1:18 missed
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5.5.2 Task Set B The purpose of this task set was to validate the behavior of RATESIM

when executing periodic, non-harmonic user tasks. In experiments 1 and 3 (see Table 5.3) RATESIM

successfully predicted the failure of the task set prior to actual failure. Again, note that the pre-

dictions RATESIM made fell within the step interval that the Haltstone was able to achieve.

Additionally, in all experiments, the RATESIM and Hartstone failure modes were similar.

RATESIM was unsuccessful in predicting the failure of the user task set in experiment 2.

Curiously, the Hartstone benchmark failed to execute a user task set whose rate of execution was

lower than a user task set it successfully executed. The cause of this behavior is most likely due

to the runtime optimization associated with task suspension discussed in Chapter IV, Section 3,

Page 4-12. If the delay for Task X will expire within T,, units of time of the delay that previously

expired for Task Y, then the penalty to respond to Task X's delay expiration is much less than if

the delay expiration had occurred after T, units of time. Figure 5.1 illustrates the window that

exists in which the delay optimization would occur. Figure 5.2 shows relationship between the

penalty for delay expirations that fall within the T, window and those that fall outside it. As the

number of tasks outside the window increases, the penalty increased linearly. The same is true for

those tasks within the T, window, but the rate of increase is significantly smaller. This being the

case, the determining factor in whether or not the increased penalty will be paid shifts to whether

or not delay expirations are "clustered" within a T. window. Therefore, it is possible, just as was

seen in Hartstone experiment 2, that a task set whose frequencies were lower than another task set

would fail while the task set with higher frequencies would pass.

This would also explain why this "T7w effect" was not observed in the task sets with harmonic

frequencies. Due to the very nature of the relationship between the task frequencies, delay expira-

tions will fall within the T7,., window. Further, any jitter within the expiration of the delay, given

a large enough T., would not be sufficient to push a task's delay expiration outside that window.

With non-harmonic tasks sets, however, the relationship between the frequencies may or may not
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cause them to fall within a T, window and even if they do, delay jitter could cause the window to

be exceeded.

Assuming that the above hypothesis is true, obviously the T7 that is modeled within RATESIM

is not equal to the T, that exists within the kernel that the Hartstone is executing under. In order

to increase the accuracy of RATESIM and to predict failures such as that experienced during exper-

iment 2, the T, effect within the the XD Ada kernel should be more accurately characterized and

subsequently modeled within RATESIM. A more specialized test than that provided by the ACEC

should be constructed and run on the XD Ada kernel to determine the precise point at which the

optimization will and won't occur. The challenge for this test will be to characterize precisely the

remaining DELAY jitter since this is presumably what causes the optimize/no optimize threshold

to be crossed.

P.ni.Ry- NIP,

M optinizaton will occur - 0kinization wi not ocur

To - Star Tkne of elay Expiration P. m Penaltyfor dolayepralon
within window

T Window in which optimization wi No - NwMer dblay exp•raIons
occur wthln window

S- Penalty for delay explration N1 - Numterafldelayxpiratlons
outide window

Figure 5.1. Delay Optimization

5.5.3 Task Set C The purpose of this task set was to validate the behavior of RATESIM

when executing periodic, harmonic, dependent user tasks. In both experiments

(see Tables 5.4 and 5.5) RATESIM successfully predicted the failure of the task set prior to actual

failure. Note that, in this case, the predictions RATESIM made were more conservative than in

task sets A and B. Even so, these results meet the criteria for successful validation of the model.

Additionally, in both experiments, the RATESIM and Hartstone failure modes were similar.
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5.6 Summary

In this chapter, the system task's behavior modeled in RATESIM was validated individually,

that is, separate from the runtime system execution. From that perspective, it was shown that

RATESIM was indeed modeling the runtime system behavior correctly. Then RATESIM was val-

idated as a whole, that is, with all the system tasks interacting with each other as well as with

the user task set. It was shown that RATESIM successfully met the objective of predicting the

scheduling failure of each user task sets prior to the actual failure in every case except one. This

failure, experiment 2 in the non-harmonic task set, was likely due to a runtime system optimiza-

tion not sufficiently characterized by RATESIM. This hypothesis was discussed and a method for

additional research was suggested.
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Table 5.3. Test Results - Task Set B - Periodic/Non-Harmonic

Hartstone Hartstone RATESIM
Experi- Passed Failed Passed Failed
Exeri- Passed Fao-Peiled FE Passed Fao- eio iled

Number Task (pus) I Whets (ps) Whets (11s) I Whets (ps) Whets

1 Task 5 2488 2 2446 2 2488 2 2487 2
Task 4 145138 4 145138 4 145138 4 145138 4
Task 3 217865 8 217865 8 217865 8 217865 8
Task 2 434783 16 434783 16 434783 16 434783 16
Task 1 500000 32 J 500000 32 500000 32 500000 32
Failure Mode (Deadlines):
Hartstone - Task 5: 1 missed, 1 skipped
RATESIM - Task 5: 3 missed

2 Task 5 17551 2 17838 2 17135 2 17068 2
Task 4 23409 4 23793 4 22852 4 22763 4
Task 3 35139 8 35716 8 34305 8 34165 8
Task 2 70126 16 71276 16 68446 16 68166 16
Task 1 80645 32 81967 32 78740 32 78431 32
Failure Mode (Deadlines):
Hartstone - Task 1: 1 met, 39 missed, 39 skipped
RATESIM - Task 1: 1 missed

3 Task 5 108814 46 108814 47 108814 46.30 108814 46.40
Task 4 145138 48 145138 49 145138 48.30 145138 48.40
Task 3 217865 52 217865 53 217865 52.30 217865 52.40
Task 2 434783 60 434783 61 434783 60.30 434783 60.40
Task 1 500000 76 500000 77 500000 76.30 500000 76.40
Failure Mode (Deadlines):
Hartstone - Task 1: 9 missed, 9 skipped
RATESIM - Task 1: 5 missed
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Table 5.4. Test Results - Task Set C1 - Periodic/Harmonic/Synchronization

Hartstone Hartstone
Experi- Passed Failed
ment Entry Call Accept at Accept Period Kilo- Period Kilo-

Number Task at time (,us) time (ps) KWhets (ps) Whets (ps) Whets
2 Task 5 0 n/a n/a 9921 2 9827 2

Task 4 n/a 0 0 9921 4 9827 4
Task 3 n/a n/a n/a 39683 8 39308 8
Task 2 n/a n/a n/a 79365 16 78616 16
Task 1 n/a n/a n/a 158730 32 157233 32

RATESIM
Passed Failed

Entry Call Accept at Accept Period Kilo- Period Kilo-
Task at time (ps) time (ps) KWhets (ps) Whets (ps) Whets

Task 5 0 n/a n/a 10417 2 9921 2
Task 4 n/a 0 0 10417 4 9921 4
Task 3 n/a n/a n/a 41667 8 39683 8
Task 2 n/a n/a n/a 83333 16 79365 16
Task 1 n/a n/a n/a 166667 32 158730 32
Failure Mode (Deadlines):
Hartstone - Task 1: 32 missed, 32 skipped
RATESIM - Task 1: 54 missed

Table 5.5. Test Results - Task Set C2 - Periodic/Harmonic/Synchronization

Hartstone Hartstone
Experi- Passed Failed
ment Entry Call Accept at Accept Period Kilo- Period Kilo-

Number Task at time (ps) time (ps) KWhets (ps) Whets (ps) Whets
2 Task 5 0 n/a n/a 8446 0 8224 0

Task 4 n/a 0 2 8446 4 8224 4
Task 3 n/a n/a n/a 33784 8 32895 8
Task 2 n/a n/a n/a 67568 16 65789 16
Task 1 n/a n/a n/a 135135 32 131579 32

RATESIM
Passed Failed

Entry Call Accept at Accept Period Kilo- Period Kilo-
Task at time (ps) time (ps) KWhets (ps) Whets (ps) Whets

Task 5 0 n/a n/a 8717 0 8705 0
Task 4 n/a 0 2 8717 4 8705 4
Task 3 n/a n/a n/a 34868 8 34819 8
Task 2 n/a n/a n/a 69735 16 69638 16
Task 1 n/a n/a n/a 139470 32 139276 32
Failure Mode (Deadlines):
Hartstone - Task 1: 38 missed, 38 skipped
RATESIM - Task 1: 2 missed
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VI. Conclusions and Recommendations

6.1 Introduction

A fundamental problem in hard realtime systems is ensuring that tasks always meet their

deadlines. The solution to this problem is to develop schedules which will ensure that result.

However, since developing an optimal schedule can be very expensive in terms of time, various

other scheduling techniques have been employed to bring the computational expense of developing

a schedule down to a manageable level. One difficulty with these techniques, in the context of the

overall system design, is that the system overhead associated with the execution of the user tasks

is either underestimated, poorly understood, or simply not accounted for in the scheduling theory.

So, in spite of the scheduling algorithm's prediction, task deadlines are missed.

This research effort's objective was three-fold:

1) To demonstrate that intimate knowledge of the entire runtime environment is not re-

quired to make an accurate determination of reserve capacity and schedulability - that

is, a subset of key runtime parameters is sufficient.

2) To provide insight into a user task's interaction with the runtime environment during

its execution.

3) To develop a parameterized model of a runtime environment which provides a conser-

vative determination of task schedulability and processor reserve capacity.

All these objectives have been accomplished. The validation data in Chapter V demonstrated

that relatively few runtime system parameters are needed to accurately predict the schedulability of

the specified user tasks. Additionally, the measurement of these system parameters using software-

based methods which depends on the resolution of the system clock does not adversely affect the

accuracy of the conservative prediction. Insight into a user task's interaction with the runtime
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system was provided through RATESIM's event history. This event history enables one to quickly

determine the cause of a missed deadline without introduction of timing errors. Finally, RATESIM

provided the parameterized model of a runtime environment to accomplish the last objective.

Specifically, this research has accomplished the following:

i) Confirmed the hypothesis that a system task can indeed be modeled as a low priority

user task that blocks the execution of a high priority user task. This means that

a scheduling determination which includes any blocking a user task suffers from the

runtime system, can be made by including runtime system blocking in the factor Bi in

Equation 2.1, Chapter II, repeated below.

= i1 C. W1" T 1_• rTjlVi, < i< n,min( T,,[ + +i <

(k, 1) ER,

where Cj and Tj are the execution time and period of task rj respectively, R, = {(k,

1) 11 < k < i, = 1 ... , [,J } and Bi is the worst case blocking time for ri.

ii) Demonstrated that sufficient reserve capacity alone will not guarantee schedulability of

a user task set. The frequency and phasing of system tasks, relative to the user task

deadlines, is inexorably linked to the schedulability of the user task set.

iii) Demonstrated that the concept of using a generic, reusable, parameterized model of a

runtime system is a viable and inexpensive alternative to the expensive "build it and

see if it works" approach often used to build embedded systems.

iv) Provided the capability to determine the schedulability of a system, early in the design,

without the use of the target hardware. This capability will permit system designers to

perform a worst-case analysis on both the user task set and the runtime system. The

model can be used to analyze the impact of user task set changes as well as runtime

system changes.
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v) Provided insight into how to build better and more powerful models/simulations of

runtime environments.

vi) Demonstrated the benefits of doing detailed clock update analysis and associated delay

modeling.

6.2 Conclusions

Several conclusions can be made as a result of this research into task schedulability. They

are:

1) The requirements of a user task set and the performance of the runtime system must

be considered and analyzed simultaneously! Failure to do this will directly impact the

success of the design.

2) Runtime system optimizations can be extremely sensitive to the various relationships

between task parameters. That is, small changes in user task requirements, either in

workload, execution frequency, or synchronization, can render a previously schedulable

task set unschedulable even though the additional requirements were modest!

3) System tasks (or system overhead) can be modeled within the existing framework of

the rate monotonic scheduling theory. They are simply another source of blocking and

can be modeled as such. No extensions to the theory is required. An execution budget,

similar to that which is typically allocated to user tasks, should be maintained and

tracked for system tasks as well.

6.3 Recommendations for Future Research

The RATESIM model is a proof of concept (or demonstration) of a more accurate way to

predict the schedulability of a given user task set. However, RATESIM used only a subset of the

tasking constructs that would be encountered in an actual embedded system. An expansion of this
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subset of tasking constructs is necessary in the modeling and schedule prediction of more realistic

systems. The following should be considered for inclusion in future versions of RATESIM:

i) synchronous and asynchronous I/O support,

ii) user task critical sections,

iii) aperiodic tasks,

iv) more robust synchronization support such as: timed entry calls and parameter passing

during synchronization,

v) dynamic task creation and deletion,

vi) implementation of the priority ceiling protocol,

vii) and task communication protocols.

In addition, RATESIM validation was done on one particular target system: a MC68020

running under the XD Ada runtime environment. It is necessary, from the perspective of further

validation, to perform similar validation tests on other targets and environments.

6.3.1 Runtime Environment Simulators From a broader perspective, much could be done

to enhance the capability of simulations such as RATESIM through the creation of descriptive

languages to describe the behavior of: (1) the user tasks, and (2) runtime environments (20).

Such languages would provide a much richer characterization of the user tasks and runtime en-

vironments than that which is currently provided in RATESIM. In RATESIM, for instance, the

runtime environment is defined by the user identifying the system tasks and supplying execution

time parameters; the scheduling policy and other implicit behavior of the runtime environment is

contained in the RATESIM program code. Suppose, however, that one would prefer to model a

task set's behavior under a different scheduling policy such as earliest-deadline-first to determine

the viability of that approach. Or perhaps, runtime environment X contains optimizations A, B,
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and C while runtime environment Y has only B. Further, it is conceivable that an important system

task might not be identified by the user and included in the simulation. These descriptive languages

would allow such information to be easily extracted from the environment and exploited within the

simulation to determine task set behavior under a wider variety of conditions.

Consider Figure 6.1. A benchmark such as the ACEC can be used to determine the timing

behavior of a runtime environment (or it could be supplied by the compiler vendor). Additionally,

a Runtime Environment Description Language (RDL) can be used to describe characteristics of the

compiler and associated RTE such as: scheduling policy, runtime optimizations, conditions in which

those optimization occur, and other information which would provide a complete characterization

of the runtime environment. A Task Description Language (TDL) can supply similar information

about the user tasks to execute under the runtime environment: execution times (worst, best,

and average case), synchronization points, I/O requirements, critical sections, etc. Using this

information, a simulator would construct a model of the environment and "execute" the task set.

The results of the simulation would then be used to refine or modify the design. If the target

hardware were available, the same TDL could be used to automatically construct a synthetic

benchmark to execute on the hardware. This would be valuable for several purposes: (1) to

evaluate potential targets in the absence of the actual application source code, (2) as a further

validation of the RTE simulator results, (3) to allow the description of benchmarks which more

accurately reflect the design rather than relying on widely used benchmarks which may or may not

do so, and (4) the automatic benchmark generation capability would defeat those optimizations

of compilers which exist only to boost the performance of the generated code under a recognized

benchmark such as the Whetstone or the Dhrystone.

If the runtime environment was also being built by the system designers or not available,

then design decisions could be specified in RDL and the impact on the user task set could be

analyzed. This type of design and analysis tool would be invaluable to designers. The strength of
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this approach is its generality and the ability to apply it early in the design phase. Creation and

standardization of an RDL and TDL is critical to the success of this approach.
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Appendix A. Delay Model

A.1 XD Ada Delay

A.1.1 Overview The XD Ada MC68020 run-time system implements the Ada DELAY state-

ment using two hardware timers on the MVME133A-20 Monoboard Microcomputer (14, 25). One

of the timers ("timer A") is used as a continuously running "chime" clock and the other ("timer D")

is used as an "alarm" clock to detect events that occur between chime clock updates. The delay

model accounts for errors introduced into a given delay request due to:

1) Conversion from float to DURATION

2) Conversion from DURATION to SYSTEM.TICK

A.1.2 Hardware Timers Both timer A and timer D consist of an 8-bit counter and an

associated prescaler value. The input frequency to the timers is LMHz. The pre-scaler value for

both timers is 200 and so the resolution of the timers (and therefore SYSTEM.TICK) is:

200( 1 ) = 162 .5ps

Elapsed time is maintained in a 64-bit register with the lower 8-bits being supplied by timer A.

When the timer A counter overflows (every 0.0416s) an interrupt is generated and the most signifi-

cant 56 bits of the 64-bit register are incremented. If a DELAY expires between timer A interrupts,

timer D is set to interrupt within that interval.

A.2 Delay Model

The XD Ada DELAY implementation is modeled using the following equation:

ro nd • D av eUest
ActualDelay = 162.5us(floor( ( DUnSMALL ) ) + 1) (A.1)

2.6624
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where Delay Request is the desired delay in seconds, DURATION'SMALL is 2-14 seconds, 162.5ps

is SYSTEM.TICK, 2.6624 is the ratio = (dimensionless), and Actual Delay is the delay pro-

duced by timer A and timer D in seconds.

A. 2.1 Error Sources There are two sources of error in the XD Ada MC68020 implementation

of the DELAY statement. The first comes from the conversion from the requested delay to type DU-

RATION. This conversion is performed by the function round( DURAT•N•SMALL) in Equation A.I.

The round function introduces a maximum of =0.5(DURATION'SMALL) = ±30.5 17 57pas of er-

ror.

The second source of error is from the conversion of DURATION to SYSTEM.TICK. The

conversion is performed by the function flooro + 1 in Equation A.1. The error will be at most

SYSTEM.TICK seconds and at the least 0 seconds.

The worst case error ranges from - 3 0 .5 175 7ps less than the requested delay to 193.01757ps

more than the request delay.

A.3 Sample Calculations

rud(Mft1 ±i'-)
A.3.1 DelayRequest = 460.Ops ActualDelay = 162.5ps(floor( 2.6624 + 1)

6 5 0.Ops

AdditionalDelay = (650.0 - 4 6 0.0)ps = 190ps

This sample calculation shows how a delay request of 460.Ops from a user application will

produce a 650.O0s delay at the hardware timer level. An additional delay of 190ps.

rou nd( ,o0oo...,- 0 6)
A.3.2 DelayRequest = 10100.0ps ActualDelay = 162.5s(floor( )+1) =

10 0 7 5.0ps
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AdditionalDelay = (10075.0 - 10100.0)ps = -25.Ops

This sample calculation shows how a delay request of 10100.Ops from a user application will

produce a 10075.Ops delay at the hardware timer level. An additional delay of - 2 5 ps.

A.4 Statistics and Model Error

The data for the observed delay graphs was obtained from the ACEC benchmark test

dt-dp.delayO1. The test originally tested only one delay request value and so was modified to test

multiple delay requests at a specified step interval. The data contained in this appendix is from

the modified test.

The descriptive statistics in Table A. 1 are the additional delay observed in the delay graphs.

Any data points that were less than or equal to 3.8 are not included in the descriptive statistics as

those data points were actual delays.

Table A.1. Descriptive Statistics - Observed Additional Delay

Statistic V__ue
Number of data points 1964
Lower 95% confidence interval 333.65
Mean 335.89
Upper 95% confidence interval 338.12
Standard deviation 50.483
Minimum value 208.40

1st Quartile 305.30
Median 332.40
3rd Quartile 370.37
Maximum value 446.80

Skew -0.0555
Kurtosis -0.7587

In order to account for the worst case additional delay in the RATESIM model, the maximum

model error must be found. Figure A.1 is a graph of the model error versus the delay request.

The model error is the difference between the observed additional delay and the model predicted

additional delay. Table A.2 contain the descriptive statistics of the model error.
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Table A.2. Descriptive Statistics - Model Error

Statistic I Value

Number of data points 1272
Lower 95% confidence interval 251.45
Mean 252.66
Upper 95% confidence interval 253.87
Standard deviation 22.044
Minimum value 187.20
1st Quartile 237.10
Median 256.3
3rd Quartile 270.00
Maximum value 304.40
Skew -0.5547
Kurtosis -0.2898

Recall that the delay model only accounts for the delay produced by the hardware timers. The

observed delay contains, additionally, the context switch execution time, and a "delay execution

component". The maximum error of the delay model is 305. The context switch as measured by

the ACEC is a constant 149. In order for the delay model to always return the worst case additional

delay, an additional 156 will be added to the delay model (305 - context switch = 156). Therefore,

the worst case additional delay is modeled by adding an additional 305 to the existing delay model

(Equation A.1).

Obviously, the data in Figure A.1 indicates that a systematic effect is still unaccounted for

in the model error. The difficulty in determining what the effect is is that, although there is a

pattern, there appears to be no correlation between the value and the original delay request. As

shown in Figure A.2 for a given model prediction of additional delay the variation in actual delay

ranges from 187.20 to 304.40.

One source of this variation may be due to the type of data collected for the model. Note the

relatively constant difference between the observed and model additional delay's in the 1 ps data

(Figure A.5). This relatively constant difference may also, in fact, hold in the delay requests shown

in the 10, 100,..., 10, 0001ts data but is masked by the fact that the delay requests were issued in

intervals greater than 1 js. Therefore, the data obtained by using the greater intervals between
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between delay requests may be various points along a line similar to the lps data. To determine if

this is the case, more data should be taken and the increase in delay request value should be lps.

If this is the case, the delay model's delay execution component could be reduced further and a

more accurate model would result.

Another possible source of this systematic error could lie in the round and floor functions

used in the delay model. If a random sample of numbers in the range of 0 to 140,000 ps had the

same distribution as that in Figure A.1, it would confirm this hypothesis.

(Observed - Model) - ps
320 I

300
2 -280 " . -.! " . 7'•

260 ,. . /

240 ". , .. ,, .,. *. ..- . /

220 " . .

200 - .
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0 20000 40000 60000 80000 100000 120000 140000
Delay Request - ps

Figure A. 1. (Observed Additional Delay - Model Additional Delay) vs. Delay Request
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A.5 Delay Model and Observed Delay Graphs

The following section contains three types of graphs: (1) delay model, (2) observed delay,

and (3) the combined delay model/observed delay. These graphs plot the requested delay versus

the additional delay. Additional delay is defined as the delay experienced by the requesting task

in addition to what was requested. The additional delay in the observed delay graphs contain

three distinct components: (1) the delay produced by the hardware timers, (2) context switch

execution time (assumed a constant 149ps as determined by the ACEC), and (3) a 'delay execution

component' defined as the time remaining after (1) and (2) have been subtracted.

The delay model graphs, as shown, account for only component (1) above. The context

switch execution time is accounted for (in the RATESIM model) by adding a constant to the result

obtained from the delay model. The delay execution component is accounted for (in the RATESIM

model) by adding another constant: the maximum value of (3) above. By adding the context switch

execution time and the maximum delay execution component to the result obtained from the delay

model, the result will always be greater than or equal to the maximum observed delay. This result

is shown in the combined delay model/observed delay graphs.

A-7



Additional Delay - us

180

160 -

140 -

120 -

100 -

80 -

60-

40-

20

0
0 50 100 150 200 250

Delay Request - ps

Figure A.3. Delay Model - lgs

Additional Delay - ps
450 1

400

350 -
.

300 0

250

200

150

100

50
0 ii I I i J

0 50 100 150 200 250
Delay Request - ps

Figure A.4. Observed Delay- lps

A-8



Additional Delay - ps
500

450

400
350
300 .

250 - o - Model

200 -- Observed

150

100

50
0 I i Ii

0 50 100 150 200 250 300
Delay Request - ps

Figure A.5. Observed/Model Delay - lps

Additional Delay - ps
200

150

100

50

0

-50 I i
0 500 1000 1500 2000

Delay Request -,us

Figure A.6. Delay Model - 10js

A-9



Additional Delay -,us
450

400

350

300

250

200

150

100

50

0 I I I

0 500 1000 1500 2000
Delay Request - ps

Figure A.7. Observed Delay - lops

Additional Delay - ps
500

450

400

350300 -
500 o - Model

20' •-- Observed

150

100

50

0
0 500 1000 1500 2000 2500

Delay Request - ps

Figure A.8. Observed/Model Delay - 10p8s

A-10



Additional Delay - p8

200 
I

15 . . .. . . . . . .. . .. . . . . . . . . . .

1 0 .. . ..... ..... ..... .. .......... ......... ......
100 .....................................................................

0.°•, ............................................................................ ....... ,10 0 • ....... °...... ,......... °....... ,............................ ,................... .................
I ................... •............ •.................. o... .............................................10 ................................................................................................

5 . ............ °..................... o........ o..... °...............................................

50 ...................................... I..........................................................
o.o ...... ... ..... °................... •.. ......... .... I.... .......... .......... .......... .........
.. .. ... ... .. ... .. ° .. ... ° .. .... ... .. ... ... .... .... .. ..... .. ..... ... ...... ... ..... .

-50 I I I
0 20000 40000 60000 80000 100000 120000

Delay Request - ps

Figure A.9. Delay Model - 100pS

A-11



Additional Delay - ps
500 1

450 .

350 ~~

250 * * . . . . . * . .

200

150 I

0 20000 40000 60000 80000 100000 120000
Delay Request - p

Figure A.10. Observed Delay - lO0ps

Additional Delay -ps
500 0 0 1 0 1 1

400 0

350

300 0a ~ 3D00-Obere
WoOoOO.~~O

450 mcw wcw[)w3Pc~mma~wW=W =QDID*1DC

200C ..... ---

0 2 004000 60000.. 80 0 10 00 12 00 140000... ....
---------- D elay----- .e u s .....

Figure ....... . . Obevd/ oe De......ay.. .........

CCIV ...A.1.



Additional Delay - ps

200 1I , 1 I
. . . . . . . . . . . .

150.................................

100 .. . . . . . . . . . . . . .

50

. .. . .. . . . . . . . . . . . . . . . .. .

. .. .. . . . . . . . . . . . . . . . . . .. .

1 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . .

-50 I i i I i i

0 50000 100000 150000 200000 250000 300000 350000
Delay Request - ps

Figure A.12. Delay Model - 1000,s

Additional Delay - ps
500

450

400 " "" " "............ . o. .. "

350.. -"

....... .... ••. ."... .. ..

250-""

200
0 50000 100000 150000 200000 250000 300000 350000

Delay Request -jus

Figure A.13. Observed Delay - 1000s

A-13



Additional Delay - ps
500 6 o oo boo olooo I

000000O00000000O000000000000000 0 000.00.00 00-000 00000000000 0
0o 0oo00oo 00o o oo oo o obo o 9 9 9 oo.o.o.o o o o

)0 000000000 0 0 oo 0oo o.000.00000 .

D.0 .0 0 0. 0. p P.p 0. 9 Q 0 0. 0 0, 0 0 10- 0 0 0. 0 t)0 00
0 0 0 0 0' 0o , 0 0 o 6.b 0 0 0ooo 0 0oo0 0 0 p o.p
0 0o o P. 0 0 0 0 0 0 0 0 0.0 .0 o 0ob-obob-0- d o o& 0'o

350 do-oo.o'MooboeoooooMoo.eoooooo.oopoM l

d o 00 "" o 0 0 0 0 P.p p 0 P.ogo.0 -- ObservedOD'o o~o o-00 o'.o 0ot o-' 0 0 o 0 Io0- b 0 0 0'o'o'0*0 0 0 0 b

300* * 0030 . ............... ............... : ... •

250

200 i I , , , ,
0 50000 100000 150000 200000 250000 300000 350000 400000

Delay Request - ps

Figure A.14. Observed/Model Delay - 1000ps

Additional Delay - ps
200

150

50

0

-50 i I i I I I I i
0 100k 200k 300k 400k 500k 600k 700k 800k 900k 1000k

Delay Request - ps

Figure A.15. Delay Model - 10000ps

A-14



Additional Delay - ps
500 I I I

450

400

350

300 ..... ... --

250

200

150

100

50

0 I I I I I I i

0 100k 200k 300k 400k 500k 600k 700k 800k 900k 1000k
Delay Request -,us

Figure A.16. Observed Delay - 10000ps

Additional Delay -,us
500 o1

0
0 0 0 0 0 0

450 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 *.0 0 0 0 . 0 0
400 0 0 0 0 0 0 0

0 .0 0 0 0 .. 0 0
O" 0 0 0 .0 0 " 0 0 0

0 *, 0 0 0 0 - 0 0350o0 0 0. *0 0 0. 0 .0 o-Model
o0 0 0 0 0 0.. 0 0"O

300 •. "" ~0*.. 0 0""

250

200 I I I I i I I I
0 100k 200k 300k 400k 500k 600k 700k 800k 900k 1000k

Delay Request -,us

Figure A.17. Observed/Model Delay - 10000ps

A-15



Additional 
Delay -,us

200 1 1
.*...........

150 .5 .................

100 . ..................

50 .................

50

-50 i .i I i i. I 
i. 

.

0 100k 200k 300k 400k 500k 600k 700k 800k 900k 1000k
Delay Request -,us

Figure A.18. Model Delay - All Data

A-16



Additional Delay - ps

450

400

350 : .. .

300 . .... : -.-

250

200

150

100

50

0
0 100k 200k 300k 400k 500k 600k 700k 800k 900k 1000k

Delay Request - ps

Figure A. 19. Observed Delay - All Data

A-17



A.6 Raw Data

Table A.3. lps data
Delay Additional Delay Additional Delay Additional Delay Additional
Request Delay Request Delay Request Delay Request Delay
(,us) (w8) (AS) (PS) (us) (As) (us) (,us)
0 3.800* 25 3.800* 50 340.1 75 319.9
1 3.800* 26 3.800* 51 338.5 76 322.5
2 3.800* 27 3.800* 52 345.3 77 318.2
3 3.800* 28 3.800* 53 340.3 78 313.8
4 3.800* 29 3.800* 54 327.2 79 308.1
5 3.800* 30 3.800* 55 340.0 80 316.0
6 3.800* 31 365.8 56 340.5 81 314.1
7 3.800* 32 363.4 57 332.3 82 310.1
8 3.800* 33 352.6 58 332.5 83 307.9
9 3.800* 34 359.3 59 330.1 84 314.3
10 3.800* 35 353.3 60 324.8 85 304.6
11 3.800* 36 355.3 61 332.4 86 306.2
12 3.800* 37 358.7 62 329.0 87 295.8
13 3.800* 38 352.5 63 330.3 88 306.1
14 3.800* 39 357.5 64 326.3 89 299.7
15 3.800* 40 345.2 65 330.6 90 298.5
16 3.800* 41 354.4 66 328.7 91 306.0
17 3.800* 42 351.4 67 319.7 92 303.4
18 3.800* 43 351.5 68 328.0 93 297.0
19 3.800* 44 355.4 69 324.1 94 297.2
20 3.800* 45 335.8 70 321.0 95 294.5
21 3.800* 46 348.2 71 323.6 96 306.4
22 3.800* 47 346.8 72 317.2 97 298.7
23 3.800* 48 346.5 73 311.3 98 297.7
24 3.800* 49 342.8 74 318.3 99 291.8

* actual delay
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Table A.4. lps data (cont)
Delay Additional Delay Additional Delay Additional Delay Additional
Request Delay Request Delay Request Delay Request Delay
(AS) (AS) (AS) (PS) (PS) (PS) (PS) (AS)
100 292.9 125 263.4 150 249.2 175 377.3
101 286.7 126 259.8 151 233.9 176 377.5
102 296.5 127 265.5 152 233.8 177 376.3
103 299.7 128 264.8 153 400.2 178 376.6
104 291.7 129 268.8 154 399.9 179 373.3
105 295.5 130 268.2 155 400.0 180 374.6
106 282.3 131 263.1 156 397.0 181 374.5
107 290.4 132 261.2 157 397.0 182 370.6
108 284.1 133 254.5 158 396.4 183 371.6
109 281.9 134 261.2 159 394.4 184 368.5
110 282.4 135 258.5 160 393.2 185 368.4
111 279.6 136 255.3 161 392.8 186 367.9
112 280.8 137 253.8 162 393.1 187 366.8
113 275.7 138 257.8 163 389.3 188 365.4
114 277.1 139 252.4 164 389.6 189 365.0
115 279.2 140 250.2 165 390.4 190 365.2
116 278.1 141 250.9 166 387.4 191 362.0
117 275.5 142 247.1 167 387.5 192 360.8
118 276.6 143 247.1 168 386.1 193 358.1
119 276.4 144 249.6 169 384.8 194 360.7
120 266.3 145 244.7 170 386.2 195 359.1
121 275.1 146 237.6 171 383.6 196 359.2
122 272.1 147 248.0 172 381.9 197 356.0
123 269.1 148 237.7 173 380.8 198 357.1
124 263.7 149 244.4 174 378.9 199 356.4
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Table A.5. lps data (cont)

Delay Additional Delay Additional Delay Additional
Request Delay Request Delay Request Delay
(AS) (pA)S j(a p) J p) (ps)
200 352.8 225 328.5 250 302.4
201 362.4 226 327.3 251 301.3
202 352.7 227 324.4 252 300.3
203 348.5 228 325.2 253 301.7
204 349.7 229 325.0 254 300.8
205 348.7 230 323.1 255 299.9
206 348.3 231 323.7 256 296.0
207 346.1 232 320.9 257 297.3
208 347.7 233 321.4 258 296.0
209 343.3 234 319.5 259 296.8
210 345.3 235 317.3 260 295.9
211 343.6 236 318.3
212 341.0 237 318.1
213 340.8 238 316.8
214 339.0 239 315.0
215 340.0 240 315.0
216 337.1 241 312.0
217 336.6 242 309.1
218 336.2 243 310.9
219 335.3 244 311.5
220 333.5 245 306.9
221 333.6 246 305.8
222 331.5 247 306.6
223 331.9 248 307.2
224 328.7 249 305.7
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Table A.6. 10ps data

Delay Additional Delay Additional Delay Additional Delay Additional
Request Delay Request Delay Request Delay Request Delay
(pa) (pa) (ps) J(pa) (pAS) J(pa) (ps) (Pa)
0 3.800* 250 303.9 500 381.0 750 292.1
10 3.800* 260 294.5 510 369.7 760 281.0
20 3.800* 270 283.9 520 361.5 770 273.3
30 3.800* 280 275.1 530 352.7 780 258.3
40 352.5 290 263.9 540 339.6 790 250.4
50 335.7 300 255.0 550 326.7 800 242.0
60 330.2 310 245.1 560 319.4 810 230.2
70 326.2 320 234.6 570 308.6 820 220.8
80 308.0 330 222.8 580 300.2 830 373.2
90 289.4 340 376.1 590 289.7 840 362.6
100 291.3 350 364.5 600 280.7 850 353.6
110 284.0 360 353.5 610 267.0 860 343.9
120 277.0 370 346.4 620 259.9 870 332.9
130 259.1 380 335.2 630 250.8 880 323.2
140 255.4 390 326.5 640 238.4 890 313.9
150 243.2 400 314.2 650 391.7 900 306.9
160 391.1 410 307.0 660 383.1 910 295.8
170 383.0 420 295.5 670 371.5 920 282.3
180 374.5 430 285.7 680 362.1 930 271.6
190 363.7 440 275.6 690 352.8 940 264.9
200 354.6 450 264.1 700 343.9 950 419.3
210 345.0 460 419.7 710 331.3 960 410.6
220 333.5 470 407.9 720 319.4 970 394.4
230 324.0 480 397.1 730 310.2 980 388.0
240 313.8 490 387.6 740 301.8 990 375.0

actualdelay
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Table A.7. 10ps data (cont)

Delay Additional Delay Additional Delay Additional Delay Additional
Request Delay Request Delay Request Delay Request Delay

[(P8) (,us) (PS) (pS) li(PS) (PS) II(PS) (PS)
1000 369.6 1250 280.1 1500 360.6 1750 266.5
1010 358.0 1260 271.8 1510 340.1 1760 261.7
1020 348.7 1270 260.5 1520 332.4 1770 251.1
1030 334.4 1280 252.1 1530 325.4 1780 236.4
1040 328.6 1290 237.8 1540 315.9 1790 223.5
1050 319.0 1300 231.1 1550 303.4 1800 217.5
1060 310.3 1310 219.8 1560 297.5 1810 371.1
1070 297.3 1320 373.5 1570 291.2 1820 350.0
1080 289.6 1330 363.2 1580 278.9 1830 350.3
1090 276.3 1340 350.2 1590 266.9 1840 346.1
1100 264.4 1350 343.4 1600 255.3 1850 332.2
1110 257.0 1360 329.9 1610 245.3 1860 323.3
1120 246.7 1370 325.9 1620 395.4 1870 310.1
1130 396.6 1380 311.6 1630 387.4 1880 298.2
1140 391.7 1390 299.8 1640 380.4 1890 292.2
1150 379.5 1400 292.0 1650 366.4 1900 285.5
1160 370.1 1410 281.6 1660 357.8 1910 270.3
1170 361.7 1420 268.3 1670 345.4 1920 260.1
1180 346.5 1430 262.9 1680 336.4 1930 415.9
1190 345.0 1440 414.0 1690 328.6 1940 403.9
1200 327.2 1450 406.3 1700 313.5 1950 389.4
1210 322.7 1460 397.0 1710 307.4 1960 379.3
1220 308.7 1470 385.9 1720 297.4 1970 368.7
1230 298.1 1480 372.3 1730 288.1 1980 360.9
1240 290.4 1490 367.6 1740 281.0 1990 352.9
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Table A.8. lOps data (cont)
Delay Additional Delay Additional
Request Delay Request Delay

(ps) (ps) (ps) (ps)
2000 340.0 2250 250.7
2010 333.3 2260 244.7
2020 316.6 2270 233.1
2030 311.0 2280 225.4
2040 301.6 2290 374.8
2050 293.9 2300 365.5
2060 278.7 2310 345.1
2070 270.0 2320 347.5
2080 262.7 2330 343.5
2090 256.2 2340 327.4
2100 243.9 2350 313.4
2110 395.4 2360 306.1
2120 387.3 2370 292.6
2130 371.3 2380 301.4
2140 364.8 2390 280.7
2150 358.1 2400 274.3
2160 349.4 2410 254.1
2170 329.9 2420 420.9
2180 324.7 2430 415.2
2190 320.7 2440 389.5
2200 316.9
2210 285.9
2220 295.4
2230 274.7
2240 265.4
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Table A.9. 100ps data
Delay Additional Delay Additional Delay Additional Delay Additional
Request Delay Request Delay Request Delay Request Delay

(p) (Pa) (,u8) J(pa8) fl ue (p$) ( AS) (p) J(A8)
100 282.1 2600 397.0 5100 341.6 7600 267.2
200 353.1 2700 290.9 5200 231.5 7700 325.4
300 253.6 2800 363.3 5300 293.9 7800 389.5
400 312.9 2900 428.7 5400 341.9 7900 295.5
500 379.7 3000 317.2 5500 249.4 8000 364.2
600 280.2 3100 381.8 5600 320.2 8100 255.2
700 340.5 3200 273.8 5700 220.2 8200 320.6
800 240.2 3300 351.4 5800 278.3 8300 376.1
900 308.8 3400 408.7 5900 339.6 8400 276.4
1000 366.4 3500 310.1 6000 230.4 8500 355.5
1100 266.4 3600 364.7 6100 303.4 8600 251.9
1200 329.1 3700 275.6 6200 360.4 8700 312.3
1300 230.4 3800 330.1 6300 264.8 8800 368.8
1400 288.6 3900 393.7 6400 336.3 8900 267.7
1500 354.3 4000 295.0 6500 220.2 9000 331.9
1600 254.3 4100 354.4 6600 300.7 9100 231.9
1700 318.4 4200 256.4 6700 369.0 9200 293.3
1800 217.1 4300 319.2 6800 249.0 9300 358.8
1900 275.6 4400 381.4 6900 320.0 9400 250.1
2000 339.6 4500 279.9 7000 395.0 9500 322.9
2100 239.4 4600 344.0 7100 278.5 9600 222.9
2200 303.9 4700 248.1 7200 343.0 9700 288.9
2300 370.8 4800 305.3 7300 405.8 9800 354.3
2400 266.1 4900 371.5 7400 298.5 9900 250.0
2500 332.1 5000 272.8 7500 364.4 10000 306.9
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Table A.10. 100ps data (cont)

Delay Additional Delay Additional Delay Additional Delay Additional
Request Delay Request Delay Request Delay Request Delay
(PS) j(AS) (pw) (pAS) (PS) (Pa) (PS) (pAS)
10100 206.9 12600 301.9 15100 221.3 17600 332.9
10200 268.4 12700 360.1 15200 284.4 17700 232.9
10300 346.8 12800 257.8 15300 361.0 17800 295.6
10400 237.0 12900 319.6 15400 240.7 17900 365.2
10500 289.7 13000 376.6 15500 307.3 18000 265.8
10600 347.9 13100 258.1 15600 393.6 18100 344.7
10700 245.0 13200 349.3 15700 303.3 18200 221.2
10800 304.8 13300 214.1 15800 355.4 18300 294.6
10900 372.1 13400 347.6 15900 412.1 18400 353.1
11000 273.8 13500 371.6 16000 319.2 18500 250.6
11100 344.4 13600 246.4 16100 391.6 18600 329.8
11200 412.2 13700 373.1 16200 280.9 18700 226.2
11300 297.2 13800 227.6 16300 327.9 18800 289.0
11400 359.9 13900 275.8 16400 417.1 18900 345.6
11500 260.0 14000 324.7 16500 293.6 19000 238.8
11600 330.7 14100 291.9 16600 370.2 19100 304.2
11700 381.2 14200 352.4 16700 266.0 19200 367.6
11800 289.7 14300 222.7 16800 309.4 19300 277.3
11900 342.9 14400 274.8 16900 402.2 19400 343.6
12000 249.8 14500 326.9 17000 285.7 19500 233.6
12100 319.7 14600 216.2 17100 344.6 19600 299.6
12200 375.0 14700 306.1 17200 254.6 19700 348.8
12300 248.2 14800 219.3 17300 330.9 19800 259.4
12400 371.4 14900 278.9 17400 374.0 19900 322.2
12500 220.7 15000 348.4 17500 270.1 20000 387.8
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Table A.11. 100ps data (cont)

Delay Additional Delay Additional Delay Additional Delay Additional
Request Delay Request Delay Request Delay Request Delay
(PS) (PS) 1(.us) j(PS) U(PS) j(PS) (PS) (PS)
20100 287.8 22600 229.3 25100 33o.4 27600 230.3
20200 347.7 22700 282.3 25200 369.1 27700 337.3
20300 400.5 22800 354.8 25300 289.4 27800 233.7
20400 313.4 22900 254.8 25400 318.3 27900 296.5
20500 373.2 23000 317.5 25500 405.2 28000 349.5
20600 259.7 23100 194.0 25600 283.9 28100 243.7
20700 338.9 23200 270.6 25700 358.3 28200 285.5
20800 385.2 23300 322.7 25800 284.1 28300 330.5
20900 294.9 23400 222.7 25900 306.5 28400 264.4
21000 347.9 23500 285.5 26000 379.6 28500 330.7
21100 264.4 23600 368.6 26100 306.1 28600 377.0
21200 310.7 23700 268.6 26200 318.2 28700 273.1
21300 389.9 23800 314.9 26300 246.6 28800 363.3
21400 273.5 23900 357.3 26400 338.4 28900 236.5
21500 352.7 24000 273.8 26500 401.2 29000 295.1
21600 232.3 24100 346.2 26600 246.9 29100 379.2
21700 315.5 24200 250.1 26700 337.8 29200 237.5
21800 378.2 24300 303.2 26800 234.9 29300 351.6
21900 257.9 24400 365.9 26900 290.9 29400 380.5
22000 341.0 24500 258.1 27000 389.4 29500 317.6
22100 241.0 24600 331.2 27100 282.7 29600 356.8
22200 294.1 24700 391.4 27200 345.4 29700 277.1
22300 356.8 24800 297.2 27300 245.4 29800 295.3
22400 266.5 24900 354.2 27400 260.7 29900 389.1
22500 312.8 25000 243.5 27500 330.3 30000 292.0
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Table A.12. 100ps data (cont)

Delay Additional Delay Additional Delay Additional Delay Additional
Request Delay Request Delay Request Delay Request Delay
(pas) (PS) (PS) (pas) fl(PS) (PS) fl(Pa) J(Pa)
30100 331.5 32600 266.1 35100 207.2 37600 364.1
30200 245.1 32700 345.0 35200 260.0 37700 406.5
30300 314.3 32800 222.1 35300 326.3 37800 326.8
30400 350.3 32900 301.3 35400 239.9 37900 389.6
30500 270.6 33000 364.1 35500 289.1 38000 319.6
30600 330.1 33100 247.6 35600 198.7 38100 371.7
30700 253.1 33200 310.4 35700 254.7 38200 394.8
30800 292.2 33300 400.3 35800 331.0 38300 335.4
30900 338.5 33400 289.6 35900 207.8 38400 357.5
31000 262.1 33500 372.7 36000 270.6 38500 440.6
31100 321.6 33600 249.2 36100 187.0 38600 340.6
31200 201.3 33700 335.5 36200 249.8 38700 423.7
31300 287.6 33800 377.9 36300 296.1 38800 283.0
31400 347.2 33900 295.0 36400 192.2 38900 356.5
31500 240.4 34000 324.2 36500 345.1 39000 448.3
31600 303.1 34100 255.2 36600 387.5 39100 328.9
31700 203.1 34200 283.1 36700 287.5 39200 412.0
31800 262.0 34300 359.4 36800 350.3 39300 271.3
31900 324.8 34400 253.6 36900 433.4 39400 354.4
32000 215.1 34500 301.8 37000 283.0 39500 377.5
32100 298.2 34600 228.9 37100 375.8 39600 317.2
32200 350.3 34700 264.6 37200 275.8 39700 379.9
32300 261.0 34800 351.6 37300 358.9 39800 279.9
32400 303.4 34900 234.1 37400 401.3 39900 342.7
32500 213.1 35000 307.6 37500 321.6 40000 405.5
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Table A.13. l 00ps data (cont)

Delay Additional Delay Additional Delay Additional Delay Additional
Request Delay Request Delay Request Delay Request Delay
(AS) U1(p) (p8) (pAS) (pus) (ps) (pUS) (J(AS)
40100 305.5 42600 409.6 45100 330.7 47600 272.1
40200 368.2 42700 309.6 45200 393.5 47700 334.9
40300 247.9 42800 352.0 45300 313.8 47800 397.6
40400 321.3 42900 435.2 45400 335.9 47900 318.0
40500 393.7 43000 335.2 45500 276.6 48000 360.4
40600 293.7 43100 377.6 45600 339.3 48100 280.7
40700 336.2 43200 297.9 45700 402.1 48200 313.5
40800 236.2 43300 340.3 45800 281.7 48300 406.2
40900 319.3 43400 423.4 45900 364.8 48400 265.6
41000 361.7 43500 323.4 46000 427.6 48500 348.7
41100 282.0 43600 365.8 46100 337.3 48600 248.7
41200 324.4 43700 265.8 46200 370.0 48700 311.4
41300 397.9 43800 369.3 46300 453.1 48800 394.5
41400 307.5 43900 371.0 46400 353.1 48900 253.8
41500 350.0 44000 291.4 46500 395.5 49000 357.3
41600 433.1 44100 354.1 46600 306.2 49100 236.9
41700 333.1 44200 254.1 46700 358.3 49200 299.7
41800 375.5 44300 337.2 46800 400.7 49300 342.1
41900 295.8 44400 400.0 46900 341.4 49400 262.5
42000 338.2 44500 300.0 47000 383.8 49500 325.2
42100 421.4 44600 362.8 47100 304.2 49600 388.0
42200 321.4 44700 242.4 47200 336.9 49700 288.0
42300 384.1 44800 305.2 47300 389.0 49800 341.1
42400 426.5 44900 367.9 47400 289.0 49900 433.9
42500 346.9 45000 288.3 47500 381.8 50000 293.2
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Table A.14. 100ps data (cont)

Delay Additional Delay Additional Delay Additional Delay Additional
Request Delay Request Delay Request Delay Request Delay
(As) (pA) I (,ps) (pa) (PS) (pA) (Pa) (AS)

50100 376.3 52600 297.3 55100 401.5 57600 322.6
50200 276.3 52700 380.4 55200 291.8 57700 233.2
50300 339.0 52800 300.8 55300 384.6 57800 305.7
50400 392.1 52900 363.5 55400 447.4 57900 348.1
50500 322.1 53000 406.0 55500 347.4 58000 288.8
50600 364.5 53100 306.0 55600 410.1 58100 351.5
50700 427.3 53200 368.7 55700 310.1 58200 393.9
50800 347.7 53300 248.4 55800 372.9 58300 293.9
50900 369.7 53400 331.5 55900 435.6 58400 356.7
51000 432.5 53500 394.2 56000 335.6 58500 256.7
51100 332.5 53600 294.2 56100 369.4 58600 319.5
51200 395.2 53700 336.6 56200 278.1 58700 402.6
51300 335.9 53800 236.6 56300 361.2 58800 272.5
51400 368.7 53900 319.8 56400 423.9 58900 324.6
51500 441.1 54000 382.5 56500 283.2 59000 407.7
51600 341.1 54100 282.5 56600 366.3 59100 328.1
51700 403.9 54200 324.9 56700 266.3 59200 370.5
51800 303.9 54300 408.0 56800 349.4 59300 433.3
51900 366.6 54400 308.0 56900 412.2 59400 353.6
52000 429.4 54500 370.8 57000 312.2 59500 396.0
52100 329.4 54600 433.6 57100 375.0 59600 296.0
52200 392.2 54700 333.6 57200 275.0 59700 358.8
52300 271.8 54800 376.0 57300 337.7 59800 401.2
52400 334.6 54900 276.0 57400 359.8 59900 341.9
52500 417.7 55000 359.1 57500 280.1 60000 384.3
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Table A.15. lOOps data (cont)

Delay Additional Delay Additional Delay Additional Delay Additional
Request Delay Request Delay Request Delay Request Delay

(6s) ) (p)) (P) (pA)
60100 304.7 62600 388.5 65100 329.9 67600 434.0

60200 347.1 62700 288.5 65200 413.0 67700 334.0
60300 430.2 62800 361.9 65300 272.3 67800 376.5
60400 330.2 62900 393.7 65400 355.4 67900 276.5

60500 372.6 63000 314.0 65500 418.2 68000 359.6
60600 252.2 63100 376.8 65600 318.2 68100 402.0
60700 335.3 63200 276.8 65700 401.3 68200 302.0
60800 418.5 63300 339.5 65800 280.9 68300 385.1
60900 318.5 63400 422.6 65900 364.0 68400 447.9
61000 340.5 63500 281.9 66000 386.1 68500 307.2
61100 240.5 63600 365.0 66100 306.4 68600 390.3
61200 344.0 63700 397.8 66200 348.9 68700 290.3
61300 366.0 63800 327.8 66300 248.9 68800 373.4
61400 306.7 63900 390.6 66400 332.0 68900 436.1
61500 349.1 64000 453.3 66500 374.4 69000 336.1
61600 249.1 64100 353.3 66600 294.7 69100 378.5
61700 311.9 64200 395.7 66700 357.5 69200 278.5
61800 354.3 64300 295.7 66800 257.5 69300 341.3
61900 295.0 64400 358.5 66900 299.9 69400 424.4
62000 357.8 64500 431.9 67000 383.0 69500 324.4
62100 217.1 64600 341.6 67100 283.0 69600 387.2
62200 300.2 64700 404.4 67200 325.4 69700 266.8
62300 342.6 64800 304.4 67300 408.5 69800 329.6
62400 283.3 64900 367.1 67400 308.5 69900 392.3
62500 305.4 65000 429.9 67500 350.9 70000 303.0
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Table A.16. 100ps data (cont)

Delay Additional Delay Additional Delay Additional Delay Additional
Request Delay Request Delay Request Delay Request Delay
(ps) (pUS) (ps) j() I(ps) (PS) (PS) j(Ps)
70100 345.4 72600 296.5 75100 217.6 77600 342.1
70200 275.5 72700 349.6 75200 300.7 77700 384.5
70300 317.9 72800 442.4 75300 333.4 77800 304.8
70400 401.0 72900 352.1 75400 263.4 77900 367.6
70500 301.0 73000 384.8 75500 326.2 78000 430.4
70600 363.7 73100 284.8 75600 389.0 78100 330.4
70700 263.7 73200 347.6 75700 289.0 78200 393.1
70800 306.1 73300 390.0 75800 351.7 78300 313.5
70900 389.3 73400 330.7 75900 425.1 78400 355.9
71000 289.3 73500 393.4 76000 294.1 78500 418.6
71100 331.7 73600 273.1 76100 377.2 78600 298.3
71200 394.4 73700 376.5 76200 277.2 78700 371.7
71300 314.8 73800 378.3 76300 340.0 78800 281.4
71400 357.2 73900 318.9 76400 402.8 78900 344.2
71500 257.2 74000 361.4 76500 323.1 79000 406.9
71600 320.0 74100 241.0 76600 355.8 79100 306.9
71700 382.7 74200 344.5 76700 407.9 79200 369.7
71800 282.7 74300 386.9 76800 298.3 79300 269.7
71900 365.8 74400 266.5 76900 411.4 79400 312.1
72000 428.6 74500 329.3 77000 453.8 79500 395.2
72100 308.2 74600 270.0 77100 353.8 79600 295.2
72200 391.3 74700 312.4 77200 386.5 79700 337.6
72300 454.1 74800 395.5 77300 316.6 79800 237.6
72400 354.1 74900 275.2 77400 359.0 79900 320.7
72500 437.2 75000 358.3 77500 432.4 80000 363.1
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Table A.17. 100ps data (cont)

Delay Additional Delay Additional Delay Additional Delay Additional
Request Delay Request Delay Request Delay Request Delay
(Ps) (PS) (pa)PS) (pa) (pa) ( (PS) (PS) (PS)

80100 283.5 82600 367.3 85100 299.0 87600 229.8
80200 346.3 82700 287.7 85200 361.8 87700 312.9
80300 388.7 82800 330.1 85300 454.6 87800 355.3
80400 288.7 82900 372.5 85400 354.6 87900 266.0
80500 371.8 83000 292.8 85500 397.0 88000 358.8
80600 414.2 83100 355.6 85600 317.3 88100 238.4
80700 314.2 83200 275.9 85700 359.8 88200 341.9
80800 367.3 83300 338.7 85800 442.9 88300 343.6
80900 297.3 83400 360.8 85900 342.9 88400 284.3
81000 360.1 83500 301.5 86000 405.6 88500 306.3
81100 432.5 83600 354.5 86100 255.3 88600 389.5
81200 313.1 83700 264.2 86200 348.0 88700 289.5
81300 365.2 83800 306.6 86300 390.5 88800 331.9
81400 448.3 83900 389.7 86400 331.1 88900 435.3
81500 348.3 84000 269.4 86500 393.9 89000 294.6
81600 390.8 84100 352.5 86600 263.9 89100 347.7
81700 311.1 84200 394.9 86700 336.3 89200 277.7
81800 353.5 84300 285.2 86800 399.1 89300 320.1
81900 426.9 84400 378.0 86900 319.4 89400 423.6
82000 316.3 84500 278.0 87000 341.5 89500 282.9
82100 379.0 84600 340.8 87100 241.5 89600 356.3
82200 279.0 84700 383.2 87200 345.0 89700 428.8
82300 382.5 84800 283.2 87300 367.0 89800 308.4
82400 424.9 84900 366.3 87400 307.7 89900 391.5
82500 324.9 85000 429.1 87500 350.1 90000 454.3
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Table A.18. 100ps data (cont)
Delay Additional Delay Additional Delay Additional Delay Additional
Request Delay Request Delay Request Delay Request Delay
(pAS) j(ps) jJ(pa) J (pA) (pa) (pAs) (pa) (pa)
90100 354.3 92600 265.7 95100 379.5 97600 341.3
90200 417.1 92700 358.5 95200 299.9 97700 383.7
90300 317.1 92800 258.5 95300 332.6 97800 304.0
90400 379.8 92900 300.9 95400 384.7 97900 346.4
90500 442.6 93000 384.0 95500 305.0 98000 388.9
90600 342.6 93100 284.0 95600 367.8 98100 329.6
90700 425.7 93200 326.4 95700 288.1 98200 372.0
90800 305.3 93300 409.5 95800 330.6 98300 455.1
90900 347.8 93400 299.8 95900 423.4 98400 355.1
91000 410.5 93500 372.3 96000 293.3 98500 417.8
91100 310.5 93600 435.0 96100 356.1 98600 277.1
91200 393.6 93700 335.0 96200 256.1 98700 360.3
91300 293.6 93800 377.4 96300 318.8 98800 443.4
91400 356.4 93900 297.8 96400 402.0 98900 343.4
91500 398.8 94000 360.5 96500 292.3 99000 365.4
91600 298.8 94100 t23.3 96600 344.4 99100 306.1
91700 381.9 94200 323.3 96700 244.4 99200 348.5
91800 281.9 94300 365.7 96800 307.1 99300 411.3
91900 324.3 94400 428.5 96900 369.9 99400 331.6
92000 407.4 94500 328.5 97000 269.9 99500 374.1
92100 287.1 94600 411.6 97100 332.6 99600 274.1
92200 370.2 94700 301.9 97200 405.1 99700 336.8
92300 270.2 94800 354.0 97300 295.4 99800 419.9
92400 332.9 94900 396.4 97400 337.8 99900 279.2
92500 395.7 95000 327.4 97500 278.5 100000 373.0
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Table A.19. 100l s data (cont)

Delay Additional Delay Additional Delay Additional Delay Additional
Request Delay Request Delay Request Delay Request Delay
(,us) (#S) 11(pS) I (PS) (As) (PS) 11(PS) (PS)
100100 262.3 102600 366.5 105100 287.6 107600 412.1
100200 315.4 102700 399.2 105200 350.3 107700 312.1
100300 368.5 102800 329.3 105300 250.3 107800 364.2
100400 308.2 102900 371.7 105400 333.4 107900 407.6
100500 330.3 103000 454.8 105500 396.2 108000 317.3
100600 271.0 103100 354.8 105600 296.2 108100 400.4
100700 313.4 103200 437.9 105700 338.6 108200 280.0
100800 396.5 103300 297.2 105800 238.6 108300 363.1
100900 276.1 103400 380.3 105900 321.7 108400 425.9
101000 338.9 103500 443.1 106000 364.1 108500 325.9
101100 259.2 103600 343.1 106100 284.5 108600 368.3
101200 301.7 103700 405.8 106200 347.2 108700 268.3
101300 364.4 103800 305.8 106300 410.0 108800 331.1
101400 244.1 103900 348.2 106400 310.0 108900 414.2
101500 347.5 104000 421.7 106500 372.8 109000 314.2
101600 389.9 104100 331.3 106600 435.5 109100 376.9
101700 289.9 104200 394.1 106700 315.2 109200 276.9
101800 352.7 104300 294.1 106800 398.3 109300 319.3
101900 405.8 104400 356.9 106900 298.3 109400 382.1
102000 335.8 104500 419.6 107000 320.3 109500 261.8
102100 378.2 104600 299.3 107100 403.5 109600 344.9
102200 257.9 104700 382.4 107200 303.5 109700 265.2
102300 341.0 104800 282.4 107300 386.6 109800 307.6
102400 403.7 104900 324.8 107400 449.3 109900 370.4
102500 324.1 105000 387.6 107500 349.3 110000 270.4
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Table A.20. 100ps data (cont)

Delay Additional Delay Additional Delay Additional Delay Additional
Request Delay Request Delay Request Delay Request Delay
G's) j (S) (,us) (PS) (/.Ips) (PS) (PS) (PS)
110100 353.5 112600 274.5 115100 378.7 117600 320.1
110200 416.2 112700 337.3 115200 278.7 117700 382.9
110300 295.9 112800 420.4 115300 341.5 117800 282.9
110400 379.0 112900 320.4 115400 404.2 117900 345.6
110500 269.3 113000 342.5 115500 304.2 118000 408.4
110600 321.4 113100 283.2 115600 357.3 118100 308.4
110700 404.5 113200 325.6 115700 429.8 118200 350.8
110800 284.2 113300 378.7 115800 329.8 118300 271.2
110900 367.3 113400 308.7 115900 372.2 118400 333.9
111000 430.0 113500 371.4 116000 455.3 118500 366.6
111100 289.4 113600 260.8 116100 334.9 118600 276.3
111200 362.8 113700 313.9 116200 418.0 118700 359.4
111300 455.6 113800 356.3 116300 318.0 118800 259.4
111400 355.6 113900 297.0 116400 380.8 118900 322.2
111500 398.0 114000 319.0 116500 443.6 119000 364.6
111600 288.3 114100 239.4 116600 343.6 119100 264.6
111700 360.7 114200 302.1 116700 406.3 119200 317.7
111800 403.2 114300 385.3 116800 296.6 119300 410.5
111900 323.5 114400 264.9 116900 369.1 119400 290.1
112000 386.3 114500 327.7 117000 431.8 119500 373.2
112100 265.9 114600 370.1 117100 331.8 119600 436.0
112200 349.0 114700 290.4 117200 374.3 119700 326.3
112300 391.4 114800 332.8 117300 294.6 119800 378.4
112400 332.1 114900 395.6 117400 337.0 119900 298.8
112500 394.9 115000 336.3 117500 420.1 120000 351.8
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Table A.21. 100ps data (cont)

Delay Additional Delay Additional Delay Additional
Request Delay Request Delay Request Delay
(ps) [(ps) Jj(ps) (ps) JJ(PS) (PS) J
120100 424.3 122600 325.0 125100 307.1
120200 324.3 122700 225.0 125200 339.8
120300 366.7 122800 328.5 125300 391.9
120400 449.8 122900 370.9 125400 332.6
120500 349.8 123000 291.2 125500 375.0
120600 412.6 123100 354.0 125600 254.7
120700 292.2 123200 416.7 125700 378.5
120800 355.0 123300 296.4 125800 380.2
120900 397.4 123400 359.1 125900 320.9
121000 317.7 123500 279.5 126000 363.3
121100 380.5 123600 321.9 126100 243.0
121200 280.5 123700 405.0 126200 326.1
121300 343.3 123800 305.0 126300 388.8
121400 426.4 123900 327.1 126400 268.5
121500 326.4 124000 410.2 126500 371.9
121600 389.1 124100 310.2 126600 231.2
121700 268.8 124200 372.9 126700 314.3
121800 351.9 124300 456.1 126800 377.1
121900 414.6 124400 335.7 126900 247.1
122000 314.6 124500 378.1 127000 319.5
122100 377.4 124600 318.8 127100 412.3
122200 257.1 124700 361.2 127200 302.6
122300 340.2 124800 424.0
122400 402.9 124900 303.6
122500 282.6 125000 386.7
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Table A.22. 1000ps data
Delay Additional Delay Additional Delay Additional Delay Additional
Request Delay Request Delay Request Delay Request Delay
(ps) (PS) (PS) (PS) II(PS) (PS) (PS) __P___)

1000 369.6 26000 387.1 51000 452.8 76000 294.1
2000 340.3 27000 353.6 52000 429.4 77000 453.8
3000 313.0 28000 330.2 53000 406.0 78000 430.4
4000 289.0 29000 292.2 54000 362.2 79000 386.6
5000 277.0 30000 302.7 55000 349.4 80000 373.8
6000 237.6 31000 251.8 56000 294.9 81000 339.7
7000 393.4 32000 208.3 57000 271.5 82000 316.3
8000 346.3 33000 364.1 58000 288.8 83000 313.2
9000 340.6 34000 361.0 59000 387.4 84000 249.1
10000 318.7 35000 296.9 60000 404.7 85000 408.7
11000 287.6 36000 284.1 61000 381.2 86000 426.0
12000 239.8 37000 292.7 62000 317.1 87000 341.5
13000 415.3 38000 309.9 63000 334.3 88000 318.1
14000 359.9 39000 428.9 64000 433.0 89000 315.0
15000 336.5 40000 385.1 65000 429.9 90000 433.9
16000 319.2 41000 361.7 66000 406.4 91000 410.5
17000 302.2 42000 338.2 67000 383.0 92000 387.1
18000 262.3 43000 314.8 68000 359.6 93000 384.0
19000 255.3 44000 261.3 69000 336.1 94000 340.2
20000 401.4 45000 267.9 70000 312.7 95000 316.8
21000 347.9 46000 427.6 71000 289.3 96000 293.3
22000 344.9 47000 363.5 72000 387.9 97000 290.2
23000 324.0 48000 340.0 73000 405.1 98000 429.6
24000 284.4 49000 316.6 74000 361.4 99000 385.8
25000 260.0 50000 333.9 75000 358.3 100000 342.0
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Table A.23. 1000ps data (cont)

Delay Additional Delay Additional Delay Additional Delay Additional
Request Delay Request Delay Request Delay Request Delay
(PS) (JAS) (PS) (J(AS) (AS) (PI) ~j(PS) (pS)
101000 359.2 126000 343.0 151000 387.7 176000 402.5
102000 295.1 127000 339.9 152000 343.9 177000 409.0
103000 454.8 128000 336.8 153000 340.8 178000 344.9
104000 431.3 129000 455.7 154000 307.7 179000 341.8
105000 387.6 130000 432.3 155000 426.7 180000 338.7
106000 343.8 131000 408.9 156000 412.9 181000 448.0
107000 310.7 132000 385.4 157000 389.5 182000 413.9
108000 337.6 133000 352.3 158000 386.4 183000 410.8
109000 273.5 134000 319.2 159000 322.3 184000 337.0
110000 290.7 135000 274.4 160000 339.5 185000 323.3
111000 409.7 136000 251.0 161000 316.1 186000 320.2
112000 406.6 137000 390.3 162000 292.7 187000 317.1
113000 362.8 138000 407.6 163000 452.3 188000 252.9
114000 359.7 139000 354.1 164000 367.9 189000 433.0
115000 316.0 140000 340.3 165000 385.1 190000 368.8
116000 455.3 141000 337.3 166000 321.0 191000 386.1
117000 411.5 142000 435.9 167000 317.9 192000 362.7
118000 388.0 143000 432.8 168000 457.2 193000 298.5
119000 344.3 144000 409.4 169000 433.8 194000 275.1
120000 320.8 145000 385.9 170000 410.3 195000 434.8
121000 338.1 146000 362.5 171000 386.9 196000 411.3
122000 314.6 147000 339.0 172000 363.5 197000 387.9
123000 281.5 148000 315.6 173000 340.0 198000 364.4
124000 389.8 149000 251.5 174000 275.9 199000 300.3
125000 407.1 150000 411.1 175000 293.1 200000 276.9
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Table A.24. 10 0 0 ps data (cont)

Delay Additional Delay Additional Delay Additional Delay Additional
Request Delay Request Delay Request Delay Request Delay
(ps) (Pa9) (A) (ps) (is) (pF) (ps) (ps)

201000 294.1 226000 298.2 251000 302.3 276000 367.4
202000 433.5 227000 254.4 252000 319.5 277000 303.3
203000 389.7 228000 393.7 253000 296.1 278000 300.1
204000 386.6 229000 411.0 254000 415.1 279000 256.4
205000 342.8 230000 367.2 255000 412.0 280000 436.4
206000 319.3 231000 323.4 256000 368.2 281000 372.3
207000 295.9 232000 340.7 257000 324.4 282000 369.2
208000 435.2 233000 296.9 258000 301.0 283000 325.4
209000 371.1 234000 436.2 259000 288.2 284000 322.3
210000 378.7 235000 372.1 260000 396.5 285000 278.5
211000 364.9 236000 389.3 261000 413.8 286000 438.2
212000 341.5 237000 365.9 262000 380.6 287000 394.4
213000 318.0 238000 342.5 263000 326.2 288000 380.6
214000 253.9 239000 319.0 264000 343.4 289000 367.8
215000 433.9 240000 275.3 265000 279.3 290000 303.8
216000 369.8 241000 414.6 266000 276.2 291000 300.6
217000 366.7 242000 411.5 267000 415.6 292000 256.9
218000 343.3 243000 367.7 268000 192.1 293000 436.8
219000 319.8 244000 344.3 269000 368.7 294000 372.8
220000 276.1 245000 300.5 270000 324.9 295000 369.7
221000 435.7 246000 297.4 271000 321.8 296000 346.2
222000 371.6 247000 436.7 272000 298.4 297000 322.8
223000 388.8 248000 372.6 273000 437.7 298000 279.0
224000 365.4 249000 389.8 274000 414.3 299000 418.3
225000 321.6 250000 366.4 275000 390.8 300000 394.9
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Table A.25. 100 0 ps data (cont)

Delay Additional Delay Additional Delay Additional
Request Delay Request Delay Rcquest Delay
(As) (AS) 11(ps) J(ps) JJ' (p) (ps)
301000 371.4 326000 395.8 351000 440.6
302000 368.3 327000 392.8 352000 417.2
303000 304.2 328000 369.3 353000 383.1
304000 321.5 329000 325.5 354000 349.9
305000 257.3 330000 281.8 355000 316.8
306000 437.3 331000 299.0 356000 323.4
307000 393.6 332000 255.2 357000 270.0
308000 360.5 333000 374.2 358000 256.2
309000 326.3 334000 350.8 359000 375.2
310000 323.3 335000 347.7 360000 372.1
311000 299.8 336000 324.3 361000 348.7
312000 418.8 337000 280.4 362000 325.2
313000 415.7 338000 399.4 363000 271.8
314000 392.3 339000 416.7 364000 400.4
315000 328.2 340000 393.3
316000 345.4 341000 329.1
317000 281.3 342000 346.4
318000 298.5 343000 272.6
319000 254.7 344000 269.5
320000 373.7 345000 276.1
321000 350.3 346000 395.0
322000 336.5 347000 371.6
323000 303.4 348000 348.2
324000 280.0 349000 304.4
325000 419.3 350000 280.9
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Table A.26. 10,000ps data
Delay Additional Delay Additional Delay Additional Delay Additional
Request Delay Request Delay Request Delay Request Delay

(,ups) (ps) (ps) (PS Os) (,us) j(PS) (PS)
10000 311.5 260000 437.2 510000 355.9 760000 294.9
20000 384.9 270000 345.3 520000 426.7 770000 345.3
30000 268.8 280000 416.0 530000 334.7 780000 416.1
40000 405.5 290000 324.1 540000 242.9 790000 324.2
50000 313.5 300000 415.2 550000 313.6 800000 415.4
60000 384.3 310000 323.3 560000 404.7 810000 323.3
70000 303.0 320000 394.1 570000 312.8 820000 394.1
80000 383.5 330000 302.1 580000 383.6 830000 322.5
90000 454.3 340000 393.3 590000 311.9 840000 393.3
100000 362.3 350000 280.9 600000 382.9 850000 301.4
110000 290.7 360000 351.8 610000 281.1 860000 392.6
120000 361.5 370000 259.8 620000 361.6 870000 300.6
130000 432.3 380000 371.3 630000 269.6 880000 371.3
140000 340.3 390000 442.1 640000 340.4 890000 442.1
150000 431.5 400000 329.8 650000 431.6 900000 329.8
160000 319.2 410000 237.8 660000 339.7 910000 278.7
170000 369.6 420000 349.3 670000 227.4 920000 339.7
180000 338.7 430000 379.4 680000 318.4 930000 420.2
190000 368.8 440000 328.2 690000 389.2 940000 307.9
200000 297.2 450000 378.6 700000 317.6 950000 389.3
210000 347.7 460000 286.7 710000 388.4 960000 286.7
220000 296.4 470000 357.4 720000 296.4 970000 398.2
230000 387.5 480000 296.5 730000 367.4 980000 306.3
240000 265.6 490000 356.6 740000 295.6 990000 397.5
250000 325.7 500000 285.1 750000 366.4
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Appendix B. System Clock Update Analysis

B.1 Overview

The XD Ada MC68020 run-time system clock is updated every 162.5ps and generates an

interrupt that the runtime system must handle every 256- 162 .5tts = 41, 600tis. Since the clock

interrupt handler is short and there are only two execution paths, it readily lends itself to manual

analysis. The interrupt handler is reproduced in Section B.3 (used by permission (13)). To insure

the worst case execution time, the analysis assumed the worst case execution path. The number

of clock cycles to execute a given instruction is contained within square braces (e.g. [ ]). Since

the MC68020 is a pipelined architecture and there is no method of predicting the state of the

pipeline at an arbitrary point in time, worst case execution times are assumed. Also note that

the MVME133A-20 single board computer inserts 1 wait state for every memory reference (14:31).

This wait state is accounted for in the execution time indicated.

B.2 Interrupt Response Time

The response time for an M-Stack interrupt is 48 clock cycles (15:10-40). In addition, there

are 12 memory references associated with the interrupt response cycle which results in 12 wait

states. Therefore, the worst case interrupt response time is 60 clock cycles once the interrupt has

been recognized. Actually, it may take significantly longer for the clock interrupt to be recognized

due to hardware interrupt priorities and the fact that pending interrupts are only recognized after

the execution of the current instruction. The MOVEM instruction, however, is an exception to

this rule. Pending interrupts are not recognized after the execution of a MOVEM instruction, but

rather recognition is delayed until the instruction following MOVEM.

This interrupt recognition latency has not been included in this analysis since, in the context

of this research, it does not induce any blocking with respect to RMA. Only the actual interrupt
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response time and interrupt handler block a user task. The time to recognize that an interrupt

occurred, in fact, does not penalize the user task whatsoever.
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B.3 Interrupt Handler

------------------ --------------------- -----

X X DDDDD AAA DDDDD AAA
X X D D A A D D A A
* X D D A A D D A A

* -- X D D AAAAAAA D D AAAAAAA --

- X D D A A D D A A
X X D D A A D D A A

X X DDDDD A A DDDDD A A
*---------------------------------------------------------------------------------- -----------------

* COPYRIGHT (c) 1988,1991 BY
* DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS.
* ALL RIGHTS RESERVED.
* COPYRIGHT (c) 1988,1991 BY
* SD-SCICON PLC, FLEET, HAMPSHIRE, ENGLAND.
* ALL RIGHTS RESERVED.

"* THIS SOFTWARE IS FURNISHED UNDER A LICENSE AID MAY BE USED AND COPIED
"* ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AID WITH THE
"* INCLUSION OF THE ABOVE COPYRIGHT NOTICE.

"* THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
", AID SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
"* CORPORATION OR SD-SCICON UK LTD.

*------------------------------------ -------------------------- *

TITLE "CLOCK"
MODULE "CLOCK"
IDENT "Vi.2A-33"

* This module provides the run-time system support for package
* CALENDAR, and provides time-out support for the TASKING system.
* It implements the clock interrupt handlers, together with routines
* to initialise the timer(s) and return the current time. It also
* contains routines which are called from the Target Kernel to
* stop and restart the clock.

------------------- ----- ---- ------- ------------------------------ --

*-- procedure COMMOIHAiDLER is
*-- begin

.. This routine is the interrupt handler for both the chiming

.. clock and the alarm clock if both exist, both use the same
*. interrupt vector, and tasking is present.

if GL*_DELAYTIMER >= 0 then
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CHINK.HAIWDLER;
C-- else

C-- ALARM-HANDLER;
C-- end it;

-- end COMKOEKHANDLER;

COMMON-.HANDLER:
TST.L GL$..DELAY..TINER.L [13)
BGE. H CRIME-.HANDLER [1i, branch taken]
BRA.V H LARILBANDLER

----------------------------------------------- ----------

-- procedure CLR..CHIME;
-- pragma INLINE (CLR-CRIIE);

C-- -- This macro need only be provided if a chiming clock is used.
-- MACRO CLR-.CHINE is called as the first action within the

C-- -- chiming timer's interrupt handler. It should clear the chiming
C-- -- timer's interrupt. In addition, if both a chiming clock and an
C-- -- alarm clock are being used, it is recommended that this macro

-- also makes sure that the alarm timer is stopped. This macro
C-- -- must not modify any registers.

CLR..CHIME: MACRO
AIDI.B #*F8,CL$..TCDCR [17]
ENRAC

*-------------------------- -------------- ------------- ----------

-- procedure SET-.ALARM (TICKS :in INTEGER);
*- pragma INLINE (SET..ALARM);

C-- -- This macro need only be provided it an alarm clock is used.
C-- -- It should set the alarm clock to interrupt after TICKS

-- SYSTEX.TICKs, where TICKS is always contained in register
C-- -- DO. L. TICKS will always be in the range 1.. KAX-..LARN. This
C-- -- macro must not modify any registers other than DO.

SET-.ALARM: MACRO
AUDI .3 8*78,CLt.TCDCR E17)
MaVE.B DO, CL$-.TDDR [9)
ORI.B #*07,CL$-.TCDCR [17)
HEDMAC

-------- ----------- ----- --- -------- -------------------

-- procedure CHIINE-.ANDLER is
-- begin

C-- -- This routine is the chiming clock interrupt handler if both a
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.. chiming clock and an alarm clock exist, tasking is present,

.. and MXALARM is greater than or equal to CHIMEPERIOD.

CLR..CHIME;
GL$_CLOCK := GL$_CLOCK + CHIMEPERIOD;

if GL$_DELAYTIMER > 0 then
it GL$_DELAYTIMER < CHINEPERIOD then

SET-ALARM (GL$_DELAYTIMER);
end it;
GL$_DELAYTIMER := GL$_DELAYTIMER - CHIME-PERIOD;

else
GL$_REqUESTS (T$_RQALAURt) := TRUE;

end it;
*-- end CHIME-HANDLER;

CHIME-HANDLER:
CLRCHIME [17)

ADDI.L #CHIMEPERIOD,GL$_LSCLOCK. L [23)
BCC. B CHNOCARRY1 [6, not taken]
ADDQ.L #1,GL$_MSCLOCK.L [17)

CHNOCARRY1: MOVE.L DO,-(A7) [8]

CHIF1: MOVE.L GL$_DELAYTIMER.L,DO [13)

BLE. H CHELSE1 [8, not taken]
CHTHEMN1:
CHIF2: CMPI.L #CHIMEPERIOD,DO [10)

BGE.W CH_ENDIF2 [8, not taken]
CHTHEU2: SET-ALARM [43)

CHENDIF2:
SUBI. L #CHIMEPERIOD,

GL*.DEIUY_TINER. L [18]

BRA.B CHEJDIF1 [11, taken]
CHELSE1: BSET.B #T$_RQALARN,GL$_REQUESTS.L
CHENDIF1:

MOVE.L (A7)+,DO [9]
MOVE.L GL$_IITrRETURN.L.-(A7) [18)

RTS [16]

B.4 Clock Update Analysis

The number of clock cycles required to update the system clock and return is the summation

of the interrupt response time (60 clock cycles) and the interrupt handler (248 clock cycles). Each

clock cycle takes 201 = 0.05ps. Therefore, the time required to update the system clock is:

(248 + 60) x 0.0 5ps = 15.4ps
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Since the clock is updated every 4 16 0 0 ps, the worst case CPU utilization for clock updates

is 16 = 0.0370%.
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Appendix C. Hartstone/RATESIM Validation Data

This appendix contains the raw validation data gathered during the testing of the RATESIM

model. Each section contains the summary Hartstone benchmark results and three RATESIM

model runs. The first RATESIM run is of the last point in which RATESIM determined that the

user task set was schedulable, the second run in the first point at which the user task set failed,

and the last run is of the user task set using the same task parameters at which the task set failed

on the target hardware while running the Hartstone benchmark.

C.1 Task Set A - Harmonic

C.1.1 Hatistone Results - Experiment I

HARTSTOIE BENCHMARK SUMMARY RESULTS

Baseline test:

Experiment: EXPERIMBENT_1 HARMONIC
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1336.78

Teat 1 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload
1o. (Hertz) per period per second Utilization
1 2.00 32 64.00 4.79 %
2 4.00 16 64.00 4.79 %
3 8.00 8 64.00 4.79 %
4 16.00 4 64.00 4.79 %
5 32.00 2 64.00 4.79 %

320.00 23.94 %

Experiment step size: 2.39 %

Test 1 results:
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Test duration (seconds): 10.0

Task Period Met Missed Skipped Average
No. in usecs Deadlines Deadlines Deadlines Late (masec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000
4 82.500 160 0 0 0.000
5 31.250 320 0 0 0.000

Last test with no missed/skipped deadlines:

Experiment: EXPERIKENT-1 HARMONIC
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1336.78

Test 24 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization
1 2.00 32 64.00 4.79 %.
2 4.00 16 64.00 4.79 %
3 8.00 8 64.00 4.79 %
4 16.00 4 64.00 4.79 %
5 400.00 2 800.00 59.85 %

1056.00 79.00 0

Experiment step size: 2.39 %

Test 24 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average
lo. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 126.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 2.500 4001 0 0 0.000
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Test when deadlines first missed/skipped:

Experiment: EXPERIMENT_1 HARMONIC
Completion on: Miss/skip 60 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KVIPS): 1336.78

Test 25 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization

1 2.00 32 64.00 4.79 %
2 4.00 16 64.00 4.79 %
3 8.00 8 64.00 4.79 %
4 16.00 4 64.00 4.79 %
6 416.00 2 832.00 62.24 %

1088.00 81.39 %

Experiment step size: 2.39 %

Test 25 results:

Test duration (seconds): 10.0

Task Period Net Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 0 10 10 472.650
2 260.000 40 0 0 0.000
3 126.000 80 0 0 0.000

4 62.500 160 0 0 0.000
6 2.404 4168 1 1 0.061

Final test performed:

Experiment: EXPERIMENT_1 HARMONIC
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Completion on: Miss/skip 60 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1336.78

Test 26 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization

1 2.00 32 64.00 4.79 %
2 4.00 16 64.00 4.79 %
3 8.00 8 64.00 4.79 %
4 16.00 4 64.00 4.79 %
6 432.00 2 864.00 64.63 %

1120.00 83.78 %.

Experiment step size: 2.39 %

Test 26 results:

Test duration (seconds): 10.0

Task Period Net Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (asec)

1 500.000 0 7 13 791.190
2 250.000 4 18 18 79.376
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 2.315 4314 3 3 0.163

Benchmark : Hartstone Benchmark, Version 1.0
Compiler : System Designers XD Ada MC68020 Ver 1.0, Kernel Ver V1.2A-33
Target : NVNE133A-20 32-bit Konoboard Microcomputer (68020 0 20.0 MHz)

Characteristics of best test for this experiment:
(no missed/skipped deadlines)

Test 24 of Experiment 1 Harmonic

Raw (non-tasking) benchmark speed in KWIPS: 1336.78

Full task set:
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Total Deadlines Task Set Total

Tasks Per Second Utilization KWIPS

5 430.00 79.00 % 1056.00

Highest-frequency task:

Period Deadlines Task Task
(nsec) Per Second Utilization KWIPS

2.500 400.00 59.85 % 800.00

Experiment step size: 2.39 %

END OF HARTSTONE BENCHMARK SUMMARY RESULTS

C.1.2 RATESIM Results - Experiment I

C.1.2.1 Successful Scheduling

IRate Monotonic Scheduler Modell

1 - Add task 2 - Remove task 3 - Get from file

4 - Save to file 5 - Perform simulation 6 - Rate Monotonic Theorem

7 - Edit task 8 - Display tasks 9 - Quit

Enter choice: g

Enter file name to get the task sot from: expl-pass
Execution

Task name Time(us) Period(us)/Frequency(Hz) Deadline(us)

Task 5 1496 2458 / 406.83 2458

Rendezvous : none

Task 4 2992 62500 / 16.00 62500

Rendezvous : none

Task 3 5984 125000 I 8.00 125000

Rendezvous : none
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Task 2 11969 250000 / 4.00 250000
Rendezvous none

Task 1 23938 500000 / 2.00 500000
Rendezvous none

-----~~~-------------------------------------------

IRate Monotonic Scheduler Modell

1 - Add task 2 - Remove task 3 - Get from file
4 - Save to file 5 - Perform simulation 6 - Rate Monotonic Theorem
7 - Edit task 8 - Display tasks 9 - Quit

Enter choice: p

Enter length of simulation in microseconds: 10-000-000
Print the Event History (y or n) : n

---------------•.__•.•• •.- _. •_-• _-• _-----.-------------• •

Task Statistics for task : Task 5
---------------------------------------------
Cumulative Execution-Time (us): 6086302
Deadlines Net : 4068
Deadlines Hissed : 0
Preemptions suffered due to higher

priority user tasks or system tasks : 268
Worst case blocking time in a single period (us):

922
Cumulative early deadlines (us): 2209876.00
Context Switches : 4336
Delay Expirations : 4068

Task Statistics for task : Task 4
--------------------------------

Cumulative ExecutionTine (us): 478720
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Deadlines Met 160
Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks 977
Worst case blocking time in a single period (us):

3801
Cumulative early deadlines (us): 7438185.00
Context Switches : 1137
Delay Expirations 169

Task Statistics for task : Task 3

Cumulative Execution-Time (us): 478720
Deadlines Met : 80
Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks : 1027
Worst case blocking time in a single period (us):

9592
Cumulative early deadlines (us): 6266005.00
Context Switches : 1107
Delay Expirations : 79

Task Statistics for task : Task 2

Cumulative Execution-Time (us): 478760

Deadlines Met : 40
Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks : 1034
Worst case blocking time in a single period (us):

34365
Cumulative early deadlines (us): 4965246.00
Context Switches : 1074
Delay Expirations : 39
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Task Statistics for task : Task 1

Cumulative Execution-Time (us): 478760
Deadlines Met : 20
Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks : 1076

Worst case blocking time in a single period (us):
99178

Cumulative early deadlines (us): 87792.00
Context Switches : 1096
Delay Expirations : 19

Simulation Time (us): 10000058
User Cumulative Task Execution Time (us): 8001262
User Deadlines Met : 4368
User Deadlines Missed: 0
Context Switches : 8750
Delay Expirations : 4364
Rendezvous executed : 0
Cumulative induced priority inversion

time due to DELAY statement jitter (us): 405446
System Task Execution Time (us): 1977526
Idle Time (us): 21270
Percentage User Task Execution Time : 80.012156

Percentage System Task Execution : 19.775145
Percentage Idle Time : 0.212699

C.1.2.2 Scheduling Failure- Experiment 1

lRate Monotonic Scheduler Modell

I - Add task 2 - Remove task 3 - Get from file
4 - Save to file 5 - Perform simulation 6 - Rate Monotonic Theorem
7 - Edit task 8 - Display tasks 9 - Quit

Enter choice: g

Enter file name to get the task set from: expl-fail

Execution
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Task name Time(us) Period(us)/Frequency(Hz) Deadline(us)

Task 5 1496 2457 / 407.00 2457

Rendezvous : none

Task 4 2992 62500 / 16.00 62500

Rendezvous : none

Task 3 5984 125000 / 8.00 125000
Rendezvous : none

Task 2 11969 250000 / 4.00 250000
Rendezvous none

Task 1 23938 500000 / 2.00 500000
Rendezvous : none

IRate Monotonic Scheduler Modell

1 - Add task 2 - Remove task 3 - Get from file
4 - Save to file 5 - Perform simulation 6 - Rate Monotonic Theorem
7 - Edit task 8 - Display tasks 9 - Quit

Enter choice: p

Enter length of simulation in microseconds: 10_000_000
Print the Event History (y or n) : n

Task Statistics for task : Task 5

Cumulative Execution-Time (us): 6088720

Deadlines Not : 4068
Deadlines Kissed 2

First deadline missed at : 4501224

Execution completed at : 4501307

Cumulative late deadlines (us): 154.00

Preemptions suffered due to higher
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priority user tasks or system tasks : 274
Worst case blocking time in a single period (us):

1044
Cumulative early deadlines (us): 2215230.00
Context Switches : 4342
Delay Expirations : 4067

Task Statistics for task : Task 4

Cumulative Execution-Time (us): 478720
Deadlines Met : 160
Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks : 967
Worst case blocking time in a single period (us):

3833
Cumulative early deadlines (us): 74566530.00
Context Switches : 1127
Delay Expirations : 159

Task Statistics for task : Task 3

Cumulative Execution-Time (us): 478720
Deadlines Met : 80
Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks : 1037
Worst case blocking time in a single period (us):

9554
Cumulative early deadlines (us): 6253632.00
Context Switches : 1117
Delay Expirations : 79

Task Statistics for task : Task 2

Cumulative Execution-Time (us): 478760
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Deadlines Not : 40
Deadlines Missed 0
Preemptions suffered due to higher

priority user tasks or system tasks 1026
Worst case blocking time in a single period (us):

24664
Cumulative early deadlines (us): 5053884.00

Context Switches : 1065
Delay Expirations : 39

Task Statistics for task : Task 1

Cumulative ExecutionTime (us): 478760
Deadlines Not : 20
Deadlines Missed 0
Preemptions suffered due to higher

priority user tasks or system tasks : 1091
Worst case blocking time in a single period (us):

98981
Cumulative early deadlines (us): 66821.00
Context Switches : 1111
Delay Expirations : 19

Simulation Time (us): 10000001
User Cumulative Task Execution Time (us): 8003680
User Deadlines Not : 4368

User Deadlines Missed : 2
Context Switches : 8760
Delay Expirations : 4363

Rendezvous executed: 0
Cumulative induced priority inversion

time due to DELAY statement jitter (us): 396314
System Task Execution Time (us): 1978702
Idle Time (us): 17611
Percentage User Task Execution Time : 80.036792
Percentage System Task Execution : 19.787018
Percentage Idle Time : 0.176110

C.1..S3 Scheduling Failure - Experiment l(Hartutone Benchmark Task Parameters)
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IRate Monotonic Scheduler Modell

1 - Add task 2 - Remove task 3 - Get from file
4 - Save to file 5 - Perform simulation 6 - Rate Monotonic Theorem
7 - Edit task 8 - Display tasks 9 - Quit

Enter choice: g

Enter file name to get the task set from: expl-fail.hart

Execution
Task name Time(us) Period(us)/Frequency(Hz) Deadline(us)

Task 5 1496 2404 / 415.97 2404
Rendezvous : none

Task 4 2992 62500 / 16.00 62500
Rendezvous : none

Task 3 5984 125000 / 8.00 125000
Rendezvous : none

Task 2 11969 250000 / 4.00 250000
Rendezvous : none

Task 1 23938 500000 / 2.00 500000
Rendezvous : none

IRate Monotonic Scheduler Modell

1 - Add task 2 - Remove task 3 - Get from file
4 - Save to file 5 - Perform simulation 6 - Rate Monotonic Theorem
7 - Edit task 8 - Display tasks 9 - Quit

Enter choice: p
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Enter length of simulation in microseconds:10_000_000
Print the Event History (y or n) : n

Task Statistics for task : Task 5

Cumulative Execution-Time (us): 6223360
Deadlines Met : 4159
Deadlines Missed : I
First deadline missed at : 8688056
Execution completed at : 8688063
Cumulative late deadlines (us): 7.00
Preemptions suffered due to higher

priority user tasks or system tasks : 192
Worst case blocking time in a single period (us):

804
Cumulative early deadlines (us): 2010855.00
Context Switches : 4351
Delay Expirations 4158

Task Statistics for task : Task 4

Cumulative Execution-Time (us): 478896
Deadlines Met : 160
Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks : 1065
Worst case blocking time in a single period (us):

4196
Cumulative early deadlines (us): 7297544.00
Context Switches : 1225
Delay Expirations : 160

Task Statistics for task : Task 3

Cumulative Execution-Time (us): 478720
Deadlines Met : 80
Deadlines Missed 0
Preemptions suffered due to higher
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priority user tasks or system tasks 1139
Worst case blocking time in a single period (us):

10372
Cumulative early deadlines (us): 5972978.00
Context Switches : 1219
Delay Expirations : 80

Task Statistics for task : Task 2

Cumulative Execution-Time (us): 478760
Deadlines Met : 40
Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks : 1235
Worst case blocking time in a single period (us):

42487
Cumulative early deadlines (us): 2317635.00
Context Switches : 1275
Delay Expirations : 40

Task Statistics for task : Task 1

Cumulative Execution-Time (us): 330520
Deadlines Met : 0
Deadlines Missed : 13
First deadline missed at : 500000

Execution completed at : 733014
Cumulative late deadlines (us): 19673080.00
Preemptions suffered due to higher

priority user tasks or system tasks : 863
Worst case blocking time in a single period (us):

153315
Cumulative early deadlines (us): 0.00
Context Switches : 863
Delay Expirations : 0

Simulation Time (us): 10000755
User Cumulative Task Execution Time (us): 7990256
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User Deadlines Net : 4439
User Deadlines Missed : 14
Context Switches 8919
Delay Expirations 4438
Rendezvous executed : 0
Cumulative induced priority inversion

time due to DELAY statement jitter (us): 474816
System Task Execution Time (us): 2010443
Idle Time (us): 0
Percentage User Task Execution Time : 79.896528
Percentage System Task Execution : 20.102912
Percentage Idle Time 0.000000

C.1.3 Hartstone Results - Experiment 2

HARTSTONE BENCHMARK SUMMARY RESULTS

Baseline test:

Experiment: EXPERIMENT_2 HARMONIC
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1336.80

Test 1 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization

1 2.00 32 64.00 4.79 %
2 4.00 16 64.00 4.79 %
3 8.00 8 64.00 4.79 %
4 16.00 4 64.00 4.79 %
5 32.00 2 64.00 4.79 %

320.00 23.94 %

Experiment step size: 2.39 %

Test 1 results:

Test duration (seconds): 10.0
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Task Period met Missed Skipped Average
No. in usecs Deadlines Deadlines Deadlines Late (asec)

1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 320 0 0 0.000

Last test with no missed/skipped deadlines:

Experiment: EXPERINENT_2 HARMONIC
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1336.80

Test 29 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization

1 7.60 32 243.20 18.19 %
2 15.20 16 243.20 18.19 %
3 30.40 8 243.20 18.19 %
4 60.80 4 243.20 18.19 %
5 121.60 2 243.20 18.19 %

1216.00 90.96 %

Experiment step size: 2.39 %

Test 29 results:

Test duration (seconds): 10.0

Task Period met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 131.579 76 0 0 0.000
2 65.789 152 0 0 0.000
3 32.895 304 0 0 0.000
4 16.447 608 0 0 0.000
5 8.224 1216 0 0 0.000
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Test when deadlines first missed/skipped:

Experiment: EXPERIMENT..-2 HARMONIC
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1336.80

Test 30 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization

1 7.80 32 249.60 18.67 %
2 15.60 16 249.60 18.67 %
3 31.20 8 249.60 18.67 %
4 62.40 4 249.60 18.67 %
5 124.80 2 249.60 18.67 %

1248.00 93.36 %

Experiment step size: 2.39 %

Test 30 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 128.205 1 39 39 49.521
2 64.103 157 0 0 0.000
3 32.051 313 0 0 0.000
4 16.026 625 0 0 0.000
5 8.013 1249 0 0 0.000

Final test performed:
See preceding summary of test 30
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Benchmark : Hartstone Benchmark, Version 1.0

Compiler : System Designers XD Ada MC68020 Ver 1.0, Kernel Ver Vl.2A-33

Target : VNE133A-20 32-bit Monoboard Microcomputer (68020 6 20.0 MHz)

Characteristics of best test for this experiment:

(no missed/skipped deadlines)

Test 29 of Experiment 2 Harmonic

Raw (non-tasking) benchmark speed in KWIPS: 1336.80

Full task set:

Total Deadlines Task Set Total
Tasks Per Second Utilization KWIPS

5 235.60 90.96 % 1216.00

Highest-frequency task:

Period Deadlines Task Task
(asec) Per Second Utilization KWIPS

8.224 121.60 18.19 % 243.20

Experiment step size: 2.39 %

END OF HARTSTONE BENCHMARK SUMMARY RESULTS

C.1.4 RATESIM Results - Experiment 2

C.1.4.1 Successful Scheduling

IRate Monotonic Scheduler Modell

I - Add task 2 - Remove task 3 - Get from file

4 - Save to file 5 - Perform simulation 6 - Rate Monotonic Theorem
7 - Edit task 8 - Display tasks 9 - Quit
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Enter choice: g

Enter file name to get the task set from: exp2_pass
Execution

Task name Time(us) Period(us)/Frequency(Hz) Deadline(us)

Task 5 1496 8123 / 123.11 8123

Rendezvous none

Task 4 2992 16246 / 61.55 16246
Rendezvous none

Task 3 5984 32492 / 30.78 32492
Rendezvous : none

Task 2 11969 64984 / 15.39 64984
Rendezvous : none

Task 1 23938 129968 / 7.69 129968
Rendezvous : none

IRate Monotonic Scheduler Model l

1 - Add task 2 - Remove task 3 - Get from file

4 - Save to file 5 - Perform simulation 6 - Rate Monotonic Theorem
7 - Edit task 8 - Display tasks 9 - Quit

Enter choice: p

Enter length of simulation in microseconds: 10.000_000
Print the Event History (y or n) : n

Task Statistics for task : Task 5

Cumulative Execution-Time (us): 1843072
Deadlines Net : 1232
Deadlines Missed : 0
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Preemptions suffered due to higher
priority user tasks or system tasks : 51

Worst case blocking time in a single period (us):
648

Cumulative early deadlines (us): 7681009.00
Context Switches : 1283
Delay Expirations : 1231

Task Statistics for task : Task 4

Cumulative Execution-Time (us): 1843072
Deadlines Net : 616
Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks : 47
Worst case blocking time in a single period (us):

681
Cumulative early deadlines (us): 6907093.00
Context Switches 663
Delay Expirations : 615

Task Statistics for task : Task 3

Cumulative Execution-Time (us): 1843072
Deadlines Net 308
Deadlines Missed 0
Preemptions suffered due to higher

priority user tasks or system tasks : 353
Worst case blocking time in a single period (us):

1333
Cumulative early deadlines (us): 5961515.00
Context Switches : 661
Delay Expirations 307

Task Statistics for task : Task 2

0-20



Cumulative Execution-Time (us): 1843226
Deadlines Not : 164
Deadlines Missed 0
Preemptions suffered due to higher

priority user tasks or system tasks : 355
Worst case blocking time in a single period (us):

2506
Cumulative early deadlines (us): 5023971.00
Context Switches : 509
Delay Expirations : 153

Task Statistics for task : Task 1

Cumulative Execution-Time (us): 1843226
Deadlines Not : 77
Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks : 587
Worst case blocking time in a single period (us):

10151
Cumulative early deadlines (us): 23088.00
Context Switches 664
Delay Expirations 76

Simulation Time (us): 10007547
User Cumulative Task Execution Time (us): 9215668
User Deadlines Net : 2387
User Deadlines Missed : 0
Context Switches 3780
Delay Expirations : 2382
Rendezvous executed : 0
Cumulative induced priority inversion

time due to DELAY statement jitter (us): 217918
System Task Execution Time (us): 767168
Idle Time (us): 24711
Percentage User Task Execution Time : 92.087182
Percentage System Task Execution : 7.665895
Percentage Idle Time : 0.246924
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C.1.4.2 Scheduling Failure

IRate Monotonic Scheduler Modell

I - Add task 2 - Remove task 3 - Get from file
4 - Save to file S - Perform simulation 6 - Rate Monotonic Theorem
7 - Edit task 8 - Display tasks 9 - Quit

Enter choice: g

Enter file name to get the task set from: exp2_fail
Execution

Task name Time(us) Period(us)/Frequency(Hz) Deadline(us)

Task 5 1496 8122 / 123.12 8122
Rendezvous : none

Task 4 2992 16244 / 61.56 16244
Rendezvous : none

Task 3 5984 32488 / 30.78 32488
Rendezvous : none

Task 2 11969 64976 / 15.39 64976
Rendezvous : none

Task 1 23938 129952 / 7.70 129952
Rendezvous : none

IRate Monotonic Scheduler Modell

1 - Add task 2 - Remove task 3 - Get from file
4 - Save to file 5 - Perform simulation 6 - Rate Monotonic Theorem
7 - Edit task 8 - Display tasks 9 - Quit
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Enter choice: p

Enter length of simulation in microseconds: 10_000_000
Print the Event History (y or n) : n

Task Statistics for task : Task 5

Cumulative Execution-Time (us): 1843072
Deadlines Met : 1232
Deadlines Kissed : 0
Preemptions suffered due to higher

priority user tasks or system tasks : 51
Worst case blocking time in a single period (us):

616
Cumulative early deadlines (us): 7677033.00
Context Switches : 1283
Delay Expirations : 1231

Task Statistics for task : Task 4

Cumulative Execution-Time (us): 1843072
Deadlines Met : 616
Deadlines Hissed: 0
Preemptions suffered due to higher

priority user tasks or system tasks : 48
Worst case blocking time in a single period (us):

807
Cumulative early deadlines (us): 6904137.00
Context Switches : 664
Delay Expirations : 615

Task Statistics for Task : Task 3

Cumulative Execution-Time (us): 1843072
Deadlines Met : 308
Deadlines Missed: 0

Preemptions suffered due to higher
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priority user tasks or system tasks : 355
Worst case blocking time in a single period (us):

1490
Cumulative early deadlines (us): 5958069.00
Context Switches : 663
Delay Expirations : 307

Task Statistics for task : Task 2

Cumulative Execution-Time (us): 1843226
Deadlines Met : 154
Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks : 358
Worst case blocking time in a single period (us):

4051
Cumulative early deadlines (us): 4980937.00
Context Switches : 512
Delay Expirations : 153

Task Statistics for task : Task I

Cumulative Execution-Time (us): 1843226
Deadlines Met : 76
Deadlines Missed : 1
First deadline missed at : 8446880
Execution completed at : 8479379
Cumulative late deadlines (us): 32499.00
Preemptions suffered due to higher

priority user tasks or system tasks : 583
Worst case blocking time in a single period (us):

12721
Cumulative early deadlines (us): 20934.00
Context Switches : 659
Delay Expirations : 75

Simulation Time (us): 10006334
User Cumulative Task Execution Time (us): 9215668
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User Deadlines Net 2386
User Deadlines Missed 1
Context Switches 3780
Delay Expirations 2381
Rendezvous executed : 0
Cumulative induced priority inversion

time due to DELAY statement jitter (us): 216923

System Task Execution Time (us): 767629
Idle Time (us): 23033
Percentage User Task Execution Time : 92.098346
Percentage System Task Execution : 7.671431
Percentage Idle Time : 0.230184

C.1-4.3 Scheduling Failure - Experiment 2(Hartsione Benchmark Task Parameters)

IRate Monotonic Scheduler Modell

1 - Add task 2 - Remove task 3 - Get from file
4 - Save to file 5 - Perform simulation 6 - Rate Monotonic Theorem
7 - Edit task 8 - Display tasks 9 - Quit

Enter choice: g

Enter file name to get the task set from: exp2_fail.hart
Execution

Task name Time(us) Period(us)/Frequency(Hz) Deadline(us)

Task 5 1496 8175 / 122.32 8176
Rendezvous : none

Task 4 2992 16349 / 61.17 16349
Rendezvous : none

Task 3 6984 32699 / 30.68 32699
Rendezvous : none

Task 2 11968 66397 / 16.29 66397
Rendezvous : none
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Task 1 23936 130794 / 7.65 130794
Rendezvous none

IRate Monotonic Scheduler Modell

1 - Add task 2 - Remove task 3 - Get from file
4 - Save to file 5 - Perform simulation 6 - Rate Monotonic Theorem
7 - Edit task 8 - Display tasks 9 - Quit

Enter choice: p

Enter length of simulation in microseconds: 10_000_000
Print the Event History (y or n) : n

Task Statistics for task : Task 5

Cumulative Execution-Time (us): 1831104
Deadlines Met : 1224
Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks 52
Worst case blocking time in a single period (us):

652
Cumulative early deadlines (us): 7695710.00
Context Switches 1276
Delay Expirations : 1223

Task Statistics for task : Task 4

Cumulative Execution-Time (us): 1831104
Deadlines Met : 612
Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks : 565
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Worst case blocking time in a single period (us):
1371

Cumulative early deadlines (us): 6768534.00
Context Switches 1177
Delay Expirations 611

Task Statistics for task : Task 3

Cumulative Execution-Time (us): 1831104
Deadlines Met : 306
Deadlines Missed: 0
Preemptions suffered due to higher

priority user tasks or system tasks : 352
Worst case blocking time in a single period (us):

1691
Cumulative early deadlines (us): 6940818.00
Context Switches : 658
Delay Expirations : 305

Task Statistics for task : Task 2

Cumulative Execution-Time (us): 1831104
Deadlines Met : 163
Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks : 464
Worst case blocking time in a single period (us):

6199
Cumulative early deadlines (us): 3486032.00
Context Switches : 617
Delay Expirations : 162

Task Statistics for task : Task 1

Cumulative Execution-Time (us): 1743765
Deadlines Met : 20
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Deadlines Missed : 52
First deadline missed at : 2615880
Execution completed at : 2615924
Cumulative late deadlines (us): 10881108.00
Preemptions suffered due to higher

priority user tasks or system tasks : 572
Worst case blocking time in a single period (us):

19856
Cumulative early deadlines (us): 18083.00
Context Switches : 592
Delay Expirations : 20

Simulation Time (us): 10005702
User Cumulative Task Execution Time (us): 9068171
User Deadlines Met : 2315
User Deadlines Missed : 52
Context Switches : 4268
Delay Expirations : 2311
Rendezvous executed 0
Cumulative induced priority inversion

time due to DELAY statement jitter (us): 185815
System Task Execution Time (us): 919111
Idle Time (us): 18212
Percentage User Task Execution Time : 90.630033
Percentage System Task Execution : 9.185872
Percentage Idle Time : 0.182016

C.1.5 Hartstone Results - Experiment 3

HARTSTONE BENCHMARK SUMMARY RESULTS

Baseline test:

Experiment: EXPERIMENT.._3 HARMONIC
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KVIPS): 1336.80

Test 1 characteristics:
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Task Frequency Kilo-Whets Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization

1 2.00 32 64.00 4.79 %
2 4.00 16 64.00 4.79 %
3 8.00 8 64.00 4.79 %
4 16.00 4 64.00 4.79 %
5 32.00 2 64.00 4.79 %

320.00 23.94 %

Experiment step size: 4.64 %

Test 1 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 320 0 0 0.000

Last test with no missed/skipped deadlines:

Experiment: EXPERIMEINT_3 HARMONIC
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1336.80

Test 16 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization

1 2.00 47 94.00 7.03 %
2 4.00 31 124.00 9.28 %
3 8.00 23 184.00 13.76 %
4 16.00 19 304.00 22.74 %
5 32.00 17 544.00 40.69 %

1250.00 93.51 %
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Experiment step size: 4.64 %

Test 16 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (masec)

1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 320 0 0 0.000

Test when deadlines first missed/skipped:

Experiment: EXPERIMENT_3 HARMONIC
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1336.80

Test 17 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

10. (Hertz) per period per second Utilization
1 2.00 48 96.00 7.18 %
2 4.00 32 128.00 9.58 %
3 8.00 24 192.00 14.36 %
4 16.00 20 320.00 23.94 %
5 32.00 18 576.00 43.09 %

1312.00 98.14 %

Experiment step size: 4.64 %

---------------------------------------------------------

Test 17 results:

Test duration (seconds): 10.0

Task Period met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (asec)
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1 500.000 0 10 10 234.229
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 320 0 0 0.000

Final test performed:

Experiment: EXPERIMENT_3 HARMONIC
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1336.80

Test 18 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization

1 2.00 49 98.00 7.33 %
2 4.00 33 132.00 9.87 %
3 8.00 25 200.00 14.96 %
4 16.00 21 336.00 25.13 %
5 32.00 19 608.00 45.48 %

1374.00 102.78 %

Experiment step size: 4.64 %

Test 18 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (asec)

1 500.000 0 5 15 1195.361
2 250.000 40 0 0 0.000
3 126.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 320 0 0 0.000
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Benchmark : Hartstone Benchmark, Version 1.0
Compiler : System Designers XD Ada MC68020 Ver 1.0, Kernel Ver V1.2A-33
Target : MVKEI33A-20 32-bit Monoboard Microcomputer (68020 Q 20.0 MHz)

Characteristics of best. test for this experiment:
(no missed/skipped deadlines)

Test 16 of Experiment 3 Harmonic

Raw (non-tasking) benchmark speed in KldIPS: 1336.80

Full task set:

Total Deadlines Task Set Total
Tasks Per Second Utilization KWIPS

5 62.00 93.51 % 1250.00

Highest-frequency task:

Period Deadlines Task Task
(msec) Per Second Utilization KWIPS
31.250 32.00 40.69 % 544.00

Experiment step size: 4.64 %

END OF HARTSTONE BENCHMARK SUMMARY RESULTS

C.1.6 RATESIM Results - Experiment 3

C.1.6.1 Successful Scheduling

IMate Monotonic Scheduler Modell

1 - Add task 2 - Remove task 3 - Get from file
4 - Save to file 5 - Perform simulation 6 - Rate Monotonic Theorem
7 - Edit task 8 - Display tasks 9 - Quit

Enter choice: g
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Enter file name to get the task set from: exp3_pass
Execution

Task name Time(us) Period(us)/Frequency(Hz) Deadline(us)

Task 5 13390 31250 / 32.00 31250

Rendezvous : none

Task 4 14886 62500 / 16.00 62500
Rendezvous : none

Task 3 17879 125000 / 8.00 125000
Rendezvous : none

Task 2 23863 250000 / 4.00 250000

Rendezvous : none

Task 1 35832 500000 / 2.00 500000
Rendezvous : none

Rate Monotonic Scheduler Modell

1 - Add task 2 - Remove task 3 - Get from file
4 - Save to file 5 - Perform simulation 6 - Rate Monotonic Theorem
7 - Edit task 8 - Display tasks 9 - Quit

Enter choice: p

Enter length of simulation in microseconds: 10-000_000

Print the Event History (y or n) : n

Task Statistics for task : Task 5

Cumulative Execution-Time (us): 4284800
Deadlines Net : 320
Deadlines Missed : 0

Preemptions suffered due to higher
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priority user tasks or system tasks 96
Worst case blocking time in a single period (us):

541
Cumulative early deadlines (us): 5586668.00
Context Switches : 416
Delay Expirations : 319

Task Statistics for task : Task 4

Cumulative Execution-Time (us): 2381760
Deadlines Net : 160
Deadlines Hissed : 0
Preemptions suffered due to higher

priority user tasks or system tasks : 50
Worst case blocking time in a single period (us):

682
Cumulative early deadlines (us): 5380289.00
Context Switches : 210
Delay Expirations : 159

Task Statistics for task : Task 3

Cumulative ExecutionTime (us): 1430320
Deadlines Met : 80
Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks : 93
Worst case blocking time in a single period (us):

1260
Cumulative early deadlines (us): 5135262.00
Context Switches : 173
Delay Expirations : 79

Task Statistics for task : Task 2

Cumulative Execution-Time (us): 954520
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Deadlines Net 40
Deadlines Missed 0
Preemptions suffered due to higher

priority user tasks or system tasks 200
Worst case blocking time in a single period (us):

4994
Cumulative early deadlines (us): 1285730.00
Context Switches : 240
Delay Expirations : 39

Task Statistics for task : Task I

Cumulative Execution-Time (us): 716640
Deadlines Net : 20
Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks : 100

Worst case blocking time in a single period (us):

11459
Cumulative early deadlines (us): 3307.00
Context Switches : 120
Delay Expirations : 19

Simulation Time (us): 10000015
User Cumulative Task Execution Time (us): 9768040
User Deadlines Het : 620
User Deadlines Kissed : 0
Context Switches : 1159

Delay Expirations : 615
Rendezvous executed : 0
Cumulative induced priority inversion

time due to DELAY statement jitter (us): 40715
System Task Execution Time (us): 228211
Idle Time (us): 3764
Percentage Use "ask Execution Time 97.680253
Percentage Syst, Task Execution 2.282107
Percentage Idle Time : 0.037640

C.1.6.2 Scheduling Failure - Ezperment S
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IRate Monotonic Scheduler Modell

1 - Add task 2 - Remove task 3 - Get from file
4 - Save to file 5 - Perform simulation 6 - Rate Monotonic Theorem
7 - Edit task 8 - Display tasks 9 - Quit

Enter choice: g

Enter file name to get the task set from: exp3_fail

Execution
Task name Time(us) Period(us)/Frequency(Hz) Deadline(us)

Task 5 13398 31250 / 32.00 31250
Rendezvous : none

Task 4 14894 62500 / 16.00 62500
Rendezvous none

Task 3 17886 125000 / 8.00 125000
Rendezvous : none

Task 2 23870 250000 / 4.00 250000
Rendezvous : none

Task 1 35839 500000 / 2.00 500000
Rendezvous : none

IRate Monotonic Scheduler Modell

1 - Add task 2 - Remove task 3 - Get from file
4 - Save to file 5 - Perform simulation 6 - Rate Monotonic Theorem
7 - Edit task 8 - Display tasks 9 - Quit

Enter choice: p
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Enter length of simulation in microseconds: 10_000000
Print the Event History (y or n) : n

Task Statistics for task : Task 5

Cumulative Execution-Time (us): 4287360
Deadlines Met : 320
Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks 96
Worst case blocking time in a single period (us):

560
Cumulative early deadlines (us): 5581655.00
Context Switches : 416
Delay Expirations : 319

Task Statistics for task : Task 4

Cumulative Execution-Time (us): 2383040
Deadlines Met : 160
Deadlines Missed: 0
Preemptions suffered due to higher

priority user tasks or system tasks : 50
Worst case blocking time in a single period (us):

703
Cumulative early deadlines (us): 5376893.00
Context Switches : 210
Delay Expirations : 159

Task Statistics for task : Task 3

Cumulative Execution-Time (us): 1430880
Deadlines Net : 80
Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks : 93
Worst case blocking time in a single period (us):

1285
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Cumulative early deadlines (us): 5132864.00
Context Switches : 173
Delay Expirations : 79

Task Statistics for task : Task 2

Cumulative Execution-Time (us): 954800
Deadlines Met : 40
Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks : 200
Worst case blocking time in a single period (us):

4958
Cumulative early deadlines (us): 1281429.00
Context Switches : 240
Delay Expirations : 39

Task Statistics for task : Task I

Cumulative Execution-Time (us): 715614
Deadlines Met: 1
Deadlines Missed : 18
First deadline missed at : 1000000
Execution completed at : 1218168
Cumulative late deadlines (us): 4033523.00

Preemptions suffered due to higher
priority user tasks or system tasks : 137

Worst case blocking time in a single period (us):
16425

Cumulative early deadlines (us): 91.00
Context Switches : 138
Delay Expirations : 1

Simulation Time (us): 10000001
User Cumulative Task Execution Time (us): 9771694
User Deadlines Met : 601
User Deadlines Missed 18
Context Switches : 1159
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Delay Expirations 597
Rendezvous executed: 0
Cumulative induced priority inversion

time due to DELAY statement jitter (us): 43052
System Task Execution Time (us): 228139
Idle Time (us): 96
Percentage User Task Execution Time : 97.716930
Percentage System Task Execution : 2.281390
Percentage Idle Time : 0.000960

C.1.6.3 Scheduling Failure - Experiment 3(Hartstone Benchmark Task Parameters)

IRate Monotonic Scheduler Modell

I - Add task 2 - Remove task 3 - Get from file
4 - Save to file 5 - Perform simulation 6 - Rate Monotonic Theorem
7 - Edit task 8 - Display tasks 9 - Quit

Enter choice: g

Enter file name to get the task set from: exp3_fail.hart

Execution
Task name Time(us) Period(us)/Frequency(Ez) Deadline(us)

Task 5 13465 31250 / 32.00 31250
Rendezvous : none

Task 4 14961 62500 / 16.00 62500
Rendezvous : none

Task 3 17953 125000 / 8.00 125000
Rendezvous : none

Task 2 23938 250000 / 4.00 250000
Rendezvous : none

Task 1 35907 500000 / 2.00 500000
Rendezvous : none
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IRate Monotonic Scheduler Modell

1 - Add task 2 - Remove task 3 - Get from file
4 - Save to file 5 - Perform simulation 6 - Rate Monotonic Theorem
7 - Edit task 8 - Display tasks 9 - Quit

Enter choice: p

Enter length of simulation in microseconds: 10_000_000

Print the Event History (y or n) : n

Task Statistics for task : Task 5

Cumulative Execution-Time (us): 4322265
Deadlines Met : 321
Deadlines Missed 0
Preemptions suffered due to higher

priority user tasks or system tasks : 96
Worst case blocking time in a single period (us):

614
Cumulative early deadlines (us): 5571871.00
Context Switches : 417
Delay Expirations : 320

Task Statistics for task : Task 4

Cumulative Execution-Time (us): 2405430
Deadlines Met : 160
Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks : 52
Worst case blocking time in a single period (us):

688
Cumulative early deadlines (us): 5357718.00
Context Switches : 212
Delay Expirations : 160
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Task Statistics for task : Task 3

Cumulative Execution-Time (us): 1436240
Deadlines Met : 80
Deadlines Missed 0
Preemptions suffered due to higher

priority user tasks or system tasks 92
Worst case blocking time in a single period (us):

1242
Cumulative early deadlines (us): 5111730.00
Context Switches : 172
Delay Expirations : 80

Task Statistics for task : Task 2

Cumulative Execution-Time (us): 957520

Deadlines Met : 40
Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks : 238
Worst case blocking time in a single period (us):

5432
Cumulative early deadlines (us): 715452.00
Context Switches : 278
Delay Expirations : 40

Task Statistics for task : Task I

Cumulative Execution-Time (us): 675469
Deadlines Met : 0
Deadlines Missed : 18
First deadline missed at : 500000
Execution completed at : 734944
Cumulative late deadlines (us): 7821724.00
Preemptions suffered due to higher
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priority user tasks or system tasks 100
Worst case blocking time in a single period (us):

16973
Cumulative early deadlines (us): 0.00
Context Switches 100
Delay Expirations: 0

Simulation Time (us): 10025600
User Cumulative Task Execution Time (us): 9796924
User Deadlines Met : 601
User Deadlines Hissed : 18
Context Switches : 1161
Delay Expirations : 600
Rendezvous executed: 0
Cumulative induced priority inversion

time due to DELAY statement jitter (us): 48005
System Task Execution Time (us): 228604
Idle Time (us): 0
Percentage User Task Execution Time : 97.719079
Percentage System Task Execution : 2.280203
Percentage Idle Time : 0.000000

C.2 Task Set B - Nonharmonic

C.2.1 Haristone Results - Eiperiment 1

HARTSTOIE BEICHMARK SUMMARY RESULTS

Baseline test:

Experiment: EXPERIHEIT_1 NOEHAOMONIC
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1336.75

Test 1 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization

1 2.00 32 64.00 4.79 %
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2 2.30 16 36.80 2.75 %.
3 4.59 8 36.72 2.75 V
4 6.89 4 27.56 2.06 %
5 9.19 2 18.38 1.37 V,

183.46 13.72 V.

Experiment step size: 1.03 %.

Test 1 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (usec)

1 500.000 20 0 0 0.000
2 434.783 23 0 0 0.000
3 217.865 46 0 0 0.000
4 145.138 69 0 0 0.000
5 108.814 92 0 0 0.000

Last test with no missed/skipped deadlines:

Experiment: EXPERIMENT_1 NONHARMONIC

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1336.75

Test 58 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization

1 2.00 32 64.00 4.79 %.
2 2.30 16 36.80 2.75 V.
3 4.59 8 36.72 2.75 %
4 6.89 4 27.56 2.06 %
5 401.92 2 803.84 60.13 V.

968.92 72.48 %.

Experiment step size: 1.03 %
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Test 568 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000
2 434.783 23 0 0 0.000
3 217.865 46 0 0 0.000
4 145.138 69 0 0 0.000

5 2.488 4020 0 0 0.000

Test when deadlines first missed/skipped:

Experiment: EXPERIMENT_1 NONHARNONIC
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KVIPS): 1336.75

Test 59 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization

1 2.00 32 64.00 4.79 %
2 2.30 16 36.80 2.75 %
3 4.59 8 36.72 2.75 %
4 6.89 4 27.56 2.06 %
5 408.81 2 817.62 61.16 %

982.70 73.51 %

Experiment step size: 1.03 %

Test 59 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average
No. in nsocs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000
2 434.783 23 0 0 0.000
3 217.865 46 0 0 0.000
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4 145.138 69 0 0 0.000
5 2.446 4087 1 1 0.112

Final test performed:

Experiment: EXPERIMENT_1 NONHARMONIC
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1336.75

Test 64 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization

1 2.00 32 64.00 4.79 %
2 2.30 16 36.80 2.75 %
3 4.59 8 36.72 2.75 %
4 6.89 4 27.56 2.06 %
5 443.26 2 886.52 66.32 %

1051.60 78.67 %

Experiment step size: 1.03 %

Test 64 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average
No in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 8 6 6 72.856
2 434.783 23 0 0 0.000
3 217.865 46 0 0 0.000
4 145.138 69 0 0 0.000
5 2.256 4377 28 28 0.078

Benchmark : Hartstone Benchmark, Version 1.0
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Compiler System Designers XD Ada MC68020 Ver 1.0, Kernel Ver V1.2A-33
Target MVME133A-20 32-bit Monoboard Microcomputer (68020 Q 20.0 MHz)

Characteristics of best test for this experiment:
(no missed/skipped deadlines)

Test 58 of Experiment I Nonharmonic

Raw (non-tasking) benchmark speed in KUIPS: 1336.75

Full task set:

Total Deadlines Task Set Total
Tasks Per Second Utilization KWIPS

5 417.70 72.48 % 968.92

Highest-frequency task:

Period Deadlines Task Task
(msec) Per Second Utilization KWIPS
2.488 401.92 60.13 % 803.84

Experiment step size: 1.03 %

END OF HARTSTONE BENCHMARK SUMMARY RESULTS

C.2.2 RATESIM Results - Ezperiment 1

C. 2.2.1 Successful Scheduling

IRate Monotonic Scheduler Modell

1 - Add task 2 - Remove task 3 - Get from file
4 - Save to file 5 - Perform simulation 6 - Rate Monotonic Theorem
7 - Edit task 8 - Display tasks 9 - Quit

Enter choice: g

Enter file name to get the task set from: nh-expl.pas
Execution

Task name Time(us) Period(us)/Frequency(Hz) Deadline(us)
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Task 5 1496 2488 / 401.93 2488

Rendezvous none

Task 4 2992 145138 / 6.89 145138

Rendezvous none

Task 3 5984 217865 / 4.59 217865
Rendezvous none

Task 2 11969 434783 / 2.30 434783
Rendezvous none

Task 1 23938 500000 / 2.00 500000

Rendezvous none

MRate Monotonic Scheduler Modell

1 - Add task 2 - Remove task 3 - Get from file
4 - Save to file 5 - Perform simulation 6 - Rate Monotonic Theorem
7 - Edit task 8 - Display tasks 9 - Quit

Enter choice: p

Enter length of simulation in microseconds: 10_000_000

Print the Event History (y or n) : n

Task Statistics for task : Task 6

Cumulative Execution-Time (us): 6012771

Deadlines Met : 4019

Deadlines Missed 0

Preemptions suffered due to higher
priority user tasks or system tasks : 262

Worst case blocking time in a single period (us):
975

Cumulative early deadlines (ns): 2322451.00
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Context Switches 4281
Delay Expirations 4019

Task Statistics for task : Task 4

Cumulative Execution-Time (us): 206448
Deadlines Met : 69
Deadlines Missed: 0
Preemptions suffered due to higher

priority user tasks or system tasks : 411
Worst case blocking time in a single period (us):

4245
Cumulative early deadlines (us): 8913869.00
Context Switches : 480
Delay Expirations : 68

Task Statistics for task : Task 3

Cumulative Execution-Time (us): 275264
Deadlines Met : 46
Deadlines Missed 0
Preemptions suffered due to higher

priority user tasks or system tasks : 539
Worst case blocking time in a single period (us):

9153
Cumulative early deadlines (us): 8365900.00
Context Switches : 585
Delay Expirations : 45

Task Statistics for task : Task 2

Cumulative Execution-Time (us): 275287
Deadlines Met : 23
Deadlines Missed 0
Preemptions suffered due to higher

priority user tasks or system tasks : 554
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Worst case blocking time in a single period (us):

21147
Cumulative early deadlines (us): 7610084.00
Context Switches : 577
Delay Expirations : 22

Task Statistics for task : Task 1

Cumulative Execution-Time (us): 478760
Deadlines Hot : 20
Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks : 964
Worst case blocking time in a single period (us):

50186
Cumulative early deadlines (us): 6233848.00
Context Switches : 984
Delay Expirations : 19

Simulation Time (us): 10000048
User Cumulative Task Execution Time (us): 7248530
User Deadlines Met : 4177
User Deadlines Missed : 0
Context Switches : 6907
Delay Expirations : 4173
Rendezvous executed : 0
Cumulative induced priority inversion

time due to DELAY statement jitter (us): 379394
System Task Execution Time (us): 1693010
Idle Time (us): 1058508
Percentage User Task Execution Time : 72.484952
Percentage System Task Execution : 16.930019
Percentage Idle Time : 10.585029

C.2.2.2 Scheduling Failure- Experiment I
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IRate Monotonic Scheduler Modell

1 - Add task 2 - Remove task 3 - Get from file
4 - Save to file 5 - Perform simulation 6 - Rate Monotonic Theorem
7 - Edit task 8 - Display tasks 9 - Quit

Enter choice: g

Enter file name to get the task set from: nh-expl.fal
Execution

Task name Time(us) Period(us)/Frequency(Hz) Deadline(us)

Task 6 1496 2487 / 402.09 2487
Rendezvous : none

Task 4 2992 145138 / 6.89 145138
Rendezvous : none

Task 3 5984 217865 / 4.59 217865
Rendezvous : none

Task 2 11969 434783 / 2.30 434783
Rendezvous : none

Task 1 23938 500000 / 2.00 500000
Rendezvous none

IRate Monotonic Scheduler Modell

I - Add task 2 - Remove task 3 - Get from file
4 - Save to file 5 - Perform simulation 6 - Rate Monotonic Theorem
7 - Edit task 8 - Display tasks 9 - Quit

Enter choice: p
ummmmti sinmui~zsm~muuuuuinuuumuuuuuuuussmt~.uuuu~uui in...uuinu.s~

Enter length of simulation in microseconds: 10_000-000
Print the Event History (y or n) : n
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Task Statistics for task : Task 5

Cumulative Execution-Time (us): 6015416
Deadlines Met : 4018
Deadlines Missed : 3
First deadline missed at : 1308162
Execution completed at : 1308231

Cumulative late deadlines (us): 118.00
Preemptions suffered due to higher

priority user tasks or system tasks : 261
Worst case blocking time in a single period (us):

1060
Cumulative early deadlines (us): 2317596.00
Context Switches : 4279
Delay Expirations : 4017

Task Statistics for task : Task 4

Cumulative ExecutionTime (us): 206448
Deadlines Met : 69
Deadlines Missed: 0
Preemptions suffered due to higher

priority user tasks or system tasks : 406

Worst case blocking time in a single period (us):
4280

Cumulative early deadlines (us): 8936035.00
Context Switches : 475
Delay Expirations : 68

Task Statistics for task : Task 3

Cumulative Execution-Time (us): 275264
Deadlines Met : 46

Deadlines Missed: 0
Preemptions suffered due to higher

priority user tasks or system tasks : 548

Worst case blocking time in a single period (us):
9335

Cumulative early deadlines (us): 8366943.00
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Context Switches 594
Delay Expirations 45

Task Statistics for task : Task 2

Cumulative Execution-Time (us): 275287
Deadlines Met : 23
Deadlines Missed 0
Preemptions suffered due to higher

priority user tasks or system tasks 556
Worst case blocking time in a single period (us):

21837

Cumulative early deadlines (us): 7596566.00
Context Switches : 579
Delay Expirations : 23

Task Statistics for task : Task I

Cumulative Execution-Time (us): 478760
Deadlines Met : 20
Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks : 950
Worst case blocking time in a single period (us):

50186
Cumulative early deadlines (us): 6238280.00
Context Switches : 970
Delay Expirations : 20

Simulation Time (us): 10000301
User Cumulative Task Execution Time (us): 7251175
User Deadlines Het : 4176
User Deadlines Missed : 3
Context Switches : 6894
Delay Expirations : 4173
Rendezvous executed: 0
Cumulative induced priority inversion

time due to DELAY statement jitter (us): 380368
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System Task Execution Time (us): 1691228
Idle Time (us): 1057886
Percentage User Task Execution Time : 72.509567
Percentage System Task Execution 16.911771
Percentage Idle Time : 10.578542

C.2.2.3 Scheduling Failure - Experiment I(Hartsione Benchmark Task Parameters)

IRate Monotonic Scheduler Modell

1 - Add task 2 - Remove task 3 - Get from file
4 - Save to file 5 - Perform simulation 6 - Rate Monotonic Theorem
7 - Edit task 8 - Display tasks 9 - Quit

Enter choice: g

Enter file name to get the task set from: nh.expl.fal

Execution
Task name Time(us) Period(us)/Frequency(Hz) Deadline(us)

Task 5 1496 2446 / 408.83 2446
Rendezvous : none

Task 4 2992 145138 / 6.89 145138
Rendezvous : none

Task 3 5984 217865 / 4.59 217865
Rendezvous : none

Task 2 11969 434783 / 2.30 434783
Rendezvous : none

Task 1 23938 500000 / 2.00 500000
Rendezvous : none
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IRate Monotonic Scheduler Modell

1 - Add task 2 - Remove task 3 - Get from file
4 - Save to file 5 - Perform simulation 6 - Rate Monotonic Theorem
7 - Edit task 8 - Display tasks 9 - Quit

Enter choice: p

Enter length of simulation in microseconds: 10000000

Print the Event History (y or n) : n

Task Statistics for task : Task 5

Cumulative Execution-Time (us): 6116110
Deadlines Met : 4087
Deadlines Missed : I
First deadline missed at 4500640
Execution completed at : 4500670
Cumulative late deadlines (us): 30.00
Preemptions suffered due to higher

priority user tasks or system tasks : 287

Worst case blocking time in a single period (us):
980

Cumulative early deadlines (us): 2125119.00
Context Switches : 4374
Delay Expirations : 4087

Task Statistics for task : Task 4

Cumulative Execution-Time (us): 206448
Deadlines Net : 69
Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks : 442
Worst case blocking time in a single period (us):

4270
Cumulative early deadlines (us): 8862446.00

Context Switches 511
Delay Expirations : 68
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Task Statistics for task : Task 3

Cumulative Execution-Time (us): 275264

Deadlines Met : 46
Deadlines Missed 0
Preemptions suffered due to higher

priority user tasks or system tasks : 587
Worst case blocking time in a single period (us):

9784

Cumulative early deadlines (us): 8238883.00
Context Switches : 633
Delay Expirations : 45

Task Statistics for task : Task 2

Cumulative Execution-Time (us): 275287
Deadlines Met : 23
Deadlines Missed: 0
Preemptions suffered due to higher

priority user tasks or system tasks : 591
Worst case blocking time in a single period (us):

23153
Cumulative early deadlines (us): 7451840.00

Context Switches : 614

Delay Expirations : 22

Task Statistics for task : Task I

Cumulative Execution-Time (us): 478760
Deadlines Met : 20
Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks : 1044

Worst case blocking time in a single period (us):
54160

Cumulative early deadlines (us): 6819981.00
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Context Switches 1064
Delay Expirations 19

Simulation Time (us): 10000129
User Cumulative Task Execution Time (us): 7351869

User Deadlines Met : 4245
User Deadlines Missed : 1
Context Switches : 7195
Delay Expirations : 4241
Rendezvous executed: 0
Cumulative induced priority inversion

time due to DELAY statement jitter (us): 447283
System Task Execution Time (us): 1746579
Idle Time (us): 901677
Percentage User Task Execution Time : 73.517742
Percentage System Task Execution : 17.465565
Percentage Idle Time : 9.016654

C.2.3 Hartstone Results - Experiment 2

HARTSTONE BENCHMARK SUMMARY RESULTS

Baseline test:

Experiment: EXPERIMEST_2 NOIHARMONIC
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1336.75

Test I characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization
1 2.00 32 64.00 4.79 %
2 2.30 16 36.80 2.75 %
3 4.59 8 36.72 2.76 %
4 6.89 4 27.66 2.06 %
5 9.19 2 18.38 1.37 %

183.46 13.72 %
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Experiment step size: 1.37 %

Test 1 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000
2 434.783 23 0 0 0.000

3 217.865 46 0 0 0.000
4 145.138 69 0 0 0.000
6 108.814 92 0 0 0.000

Last test with no missed/skipped deadlines:

Experiment: EXPERIMENT_2
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1336.75

Test 53 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization

1 12.40 32 396.80 29.68 %
2 14.26 16 228.16 17.07 %
3 28.46 8 227.66 17.03 %
4 42.72 4 170.87 12.78 %
5 56.98 2 113.96 8.52 %

1137.45 85.09 %

Experiment step size: 1.37 %

Test 53 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average
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No. in msecs Deadlines Deadlines Deadlines Late (asec)
1 80.645 125 0 0 0.000
2 70.126 143 0 0 0.000
3 35.139 285 0 0 0.000
4 23.409 428 0 0 0.000
5 17.551 570 0 0 0.000

Test when deadlines first missed/skipped:

Experiment: EXPERIMENT_2 NONHARNONIC
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1336.75

Test 52 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization

1 12.20 32 390.40 29.21 %
2 14.03 16 224.48 16.79 %
3 28.00 8 223.99 16.76 %
4 42.03 4 168.12 12.58 %
5 56.06 2 112.12 8.39 %

1119.11 83.72 %

Experiment step size: 1.37 %

Test 52 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 81.967 121 1 1 7.761
2 71.276 141 0 0 0.000
3 35.716 280 0 0 0.000
4 23.793 421 0 0 0.000
5 17.838 561 0 0 0.000
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Final test performed:

Experiment: EXPERIKENT_2 IOIIARNOIIC
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KVIPS): 1336.75

Test 57 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization

1 13.20 32 422.40 31.60 %
2 15.18 16 242.88 18.17 %
3 30.29 8 242.35 18.13 %
4 45.47 4 181.90 13.61 %
5 60.65 2 121.31 9.07 %

1210.84 90.58 %

Experiment step size: 1.37 %

Test 57 results:

Test duration (seconds): 10.0

Task Period Net Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 75.758 72 30 30 11.485
2 65.876 152 0 0 0.000
3 33.010 303 0 0 0.000
4 21.991 455 0 0 0.000
5 16.487 607 0 0 0.000

Benchmark : Hartstone Benchmark, Version 1.0
Compiler : System Designers XD Ada MC68020 Ver 1.0, Kernel Ver V1.2A-33
Target : NVME133A-20 32-bit Monoboard Microcomputer (68020 0 20.0 MHz)

Characteristics of best test for this experiment:
(no missed/skipped deadlines)
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Test 63 of Experiment 2 lonharuonic

Raw (non-tasking) benchmark speed in KWIPS: 1336.75

Full task set:

Total Deadlines Task Set Total
Tasks Per Second Utilization KWIPS

5 164.81 85.09 % 1137.46

Highest-frequency task:

Period Deadlines Task Task
(masc) Per Second Utilization KVIPS
17.561 56.98 8.52 % 113.96

Experiment step size: 1.37 %

END OF HARTSTONE BENCHMARK SUMMARY RESULTS

C.2.4 RATESIM Results - Experiment 2

C.2.4.1 Successful Scheduling

IRate Monotonic Scheduler Modell

1 - Add task 2 - Remove task 3 - Get from file
4 - Save to file 5 - Perform simulation 6 - Rate Monotonic Theorem
7 - Edit task 8 - Display tasks 9 - Quit

Enter choice: g
Z•--•°-•e• -•mSIZ-----~e--•8---------- SZS• =

Enter file name to get the task set from: nhoexp2.paas
Execution

Task name Time(us) Period(us)/Frequency(Iz) Deadline(us)

Task 6 1496 17136 / 58.36 17135
Rendezvous : none
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Task 4 2992 22852 / 43.76 22852
Rendezvous none

Task 3 5984 34305 / 29.15 34305
Rendezvous : none

Task 2 11969 68446 / 14.61 68446
Rendezvous none

Task 1 23938 78740 / 12.70 78740
Rendezvous none

IRate Monotonic Scheduler Nodell

I - Add task 2 - Remove task 3 - Get from file
4 - Save to file 5 - Perform simulation 6 - Rate Monotonic Theorem
7 - Edit task 8 - Display tasks 9 - Quit

Enter choice: p

Enter length of simulation in microseconds: 10-000-000

Print the Event History (y or n) : n

Task Statistics for task : Task 5

Cumulative Execution-Time (us): 873664
Deadlines Net : 584
Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks : 189
Vorst case blocking time in a single period (us):

1267
Cumulative early deadlines (us): 8852982.00
Context Switches : 773
Delay Expirations : 583
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Task Statistics for task : Task 4

Cumulative Execution-Time (us): 1310496
Deadlines Met : 438
Deadlines Missed 0
Preemptions suffered due to higher

priority user tasks or system tasks 97
Worst case blocking time in a single period (us):

1218
Cumulative early deadlines (us): 8375303.00
Context Switches : 535
Delay Expirations : 437

Task Statistics for task : Task 3

Cumulative Execution-Time (us): 1747328
Deadlines Met : 292
Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks 166
Worst case blocking time in a single period (us):

1886
Cumulative early deadlines (us): 7638389.00
Context Switches 458
Delay Expirations : 291

Task Statistics for task : Task 2

Cumulative Execution-Time (us): 1752421
Deadlines Met : 146
Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks : 359
Worst case blocking time in a single period (us):

3217
Cumulative early deadlines (us): 6481774.00
Context Switches 505
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Delay Expirations 146

Task Statistics for task : Task I

Cumulative Execution-Time (us): 3040126
Deadlines Met : 127
Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks : 721
Worst case blocking time in a single period (us):

5363
Cumulative early deadlines (us): 2111842.00
Context Switches : 848
Delay Expirations : 126

Simulation Time (us): 10000091
User Cumulative Task Execution Time (us): 8724035
User Deadlines Met : 1587
User Deadlines Missed : 0
Context Switches : 3119
Delay Expirations : 1583
Rendezvous executed: 0
Cumulative induced priority inversion

time due to DELAY statement jitter (us): 127663
System Task Execution Time (us): 716478
Idle Time (us): 659578
Percentage User Task Execution Time : 87.239556
Percentage System Task Execution : 7.164715
Percentage Idle Time 5.595729

C.2.4.2 Scheduling Failure- Ezperiment 2

Rate Monotonic Scheduler Modell

I - Add task 2 - Remove task 3 - Get from file
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4 - Save to file 5 - Perform simulation 6 - Rate Monotonic Theorem
7 - Edit task 8 - Display tasks 9 - Quit

Enter choice: p

Enter file name to get the task set from: nh-exp2.fail
Execution

Task name Time(us) Period(us)/Frequency(Hz) Deadline(us)

Task 5 1496 17068 / 58.59 17068
Rendezvous none

Task 4 2992 22763 / 43.93 22763
Rendezvous : none

Task 3 5984 34165 / 29.27 34166
Rendezvous : none

Task 2 11969 68166 / 14.67 68166
Rendezvous : none

Task 1 23938 78431 / 12.75 78431
Rendezvous : none

iRate Monotonic Scheduler Modell

I - Add task 2 - Remove task 3 - Get from file
4 - Save to file 5 - Perform simulation 6 - Rate Monotonic Theorem
7 - Edit task 8 - Display tasks 9 - Quit

Enter choice: p

Enter length of simulation in microseconds: 10_000_000
Print the Event History (y or n) : n

Task Statistics for task : Task 5
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Cumulative Execution-Time (us): 876656
Deadlines Met : 586
Deadlines Missed 0
Preemptions suffered due to higher

priority user tasks or system tasks : 195
Worst case blocking time in a single period (us):

1288
Cumulative early deadlines (us): 8836499.00
Context Switches 781
Delay Expirations : 585

Task Statistics for task : Task 4

Cumulative Execution-Time (us): 1316480
Deadlines Met : 440
Deadlines Missed: 0
Preemptions suffered due to higher

priority user tasks or system tasks 114
Worst case blocking time in a single period (us):

1175
Cumulative early deadlines (us): 8361433.00
Context Switches : 664
Delay Expirations : 439

Task Statistics for task : Task 3

Cumulative Execution-Time (us): 1763312
Deadlines Met : 293
Deadlines Missed: 0
Preemptions suffered due to higher

priority user tasks or system tasks : 109
Worst case blocking time in a single period (us):

1943
Cumulative early deadlines (us): 7719816.00
Context Switches : 402
Delay Expirations : 292
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Task Statistics for task : Task 2
----------------------------------------------
Cumulative Execution-Time (us): 1759443
Deadlines Met : 147
Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks : 306
Worst case blocking time in a single period (us):

3216
Cumulative early deadlines (us): 6603602.00
Context Switches : 453
Delay Expirations : 146

Task Statistics for task : Task 1
----------------------------------------------
Cumulative Execution-Time (us): 3057874
Deadlines Met : 126
Deadlines Missed: 1
First deadline missed at 2196068
Execution completed at : 2207724
Cumulative late deadlines (us): 11656.00
Preemptions suffered due to higher

priority user tasks or system tasks : 804
Worst case blocking time in a single period (us):

6827
Cumulative early deadlines (us): 2010660.00
Context Switches : 930
Delay Expirations 126

Simulation Time (us): 10001962
User Cumulative Task Execution Time (us): 8763765
User Deadlines Met : 1592
User Deadlines Hissed : 1
Context Switches : 3119
Delay Expirations : 1588
Rendezvous executed : 0
Cumulative induced priority inversion

time due to DELAY statement jitter (us): 139227
System Task Execution Time (us): 716653
Idle Time (us): 521540
Percentage User Task Execution Time 87.620459
Percentage System Task Execution 7.165124
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Percentage Idle Time : 5.214377

C.2-4.3 Scheduling Failure - Experiment 2(Haristone Benchmark Task Parameters)

IRate Monotonic Scheduler Modell

1 - Add task 2 - Remove task 3 - Get from file
4 - Save to file 5 - Perform simulation 6 - Rate Monotonic Theorem

7 - Edit task 8 - Display tasks 9 - Quit

Enter choice:

Enter file name to get the task set from: nh-exp2_fail.hart
Execution

Task name Time(us) Period(us)/Frequency(Hz) Deadline(us)

Task 5 1496 17838 / 56.06 17838
Rendezvous : none

Task 4 2992 23793 / 42.03 23793
Rendezvous : none

Task 3 5984 35716 / 28.00 35716
Rendezvous : none

Task 2 11969 71276 / 14.03 71276

Rendezvous : none

Task 1 23938 81967 / 12.20 81967
Rendezvous : none

-- -- --- ---- --- -- ----- --- ----- ---=

lRate Monotonic Scheduler Modell
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1 - Add task 2 - Remove task 3 - Get from file

4 - Save to file 5 - Perform simulation 6 - Rate Monotonic Theorem

7 - Edit task 8 - Display tasks 9 - Quit

Enter choice: p

Enter length of simulation in microseconds: 10_000_000

Print the Event History (y or n) - n

Task Statistics for task : Task 5

Cumulative Execution-Time (us): 839256
Deadlines Met : 561

Deadlines Missed : 0

Preemptions suffered due to higher
priority user tasks or system tasks : 140

Worst case blocking time in a single period (us):
1070

Cumulative early deadlines (us): 8899834.00

Context Switches : 701

Delay Expirations : 560

Task Statistics for task : Task 4

Cumulative Execution-Time (us): 1259632
Deadlines Met : 421

Deadlines Missed : 0

Preemptions suffered due to higher
priority user tasks or system tasks : 126

Worst case blocking time in a single period (us):
1224

Cumulative early deadlines (us): 8410000.00

Context Switches : 547

Delay Expirations : 420

Task Statistics for task : Task 3
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Cumulative Execution-Time (us): 1676520
Deadlines Met : 280
Deadlines Missed 0
Preemptions suffered due to higher

priority user tasks or system tasks 98
Worst case blocking time in a single period (us):

1769
Cumulative early deadlines (us): 7804659.00
Context Switches : 378
Delay Expirations : 279

Task Statistics for task : Task 2

Cumulative Execution-Time (us): 1687629
Deadlines Met : 141
Deadlines Missed: 0
Preemptions suffered due to higher

priority user tasks or system tasks : 435
Worst case blocking time in a single period (us):

3231
Cumulative early deadlines (us): 6536897.00
Context Switches : 576
Delay Expirations : 140

Task Statistics for task : Task 1

Cumulative Execution-Time (us): 2920436
Deadlines Net : 122
Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks : 636
Worst case blocking time in a single period (us):

5384
Cumulative early deadlines (us): 2799953.00
Context Switches : 758
Delay Expirations : 121

Simulation Time (us): 10000065
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User Cumulative Task Execution Time (us): 8382473
User Deadlines Met : 1525
User Deadlines Missed : 0
Context Switches : 2960
Delay Expirations 1520
Rendezvous executed: 0
Cumulative induced priority inversion

time due to DELAY statement jitter (-as): 132134
System Task Execution Time (us): 683235
Idle Time (us): 934357
Percentage User Task Execution Time : 83.824185
Percentage System Task Execution : 6.832306
Percentage Idle Time : 9.343509

C.2.5 Haristone Results - Experiment 3

HARTSTOIE BENCHMARK SUMMARY RESULTS

Baseline test:

Experiment: EXPERIMENT_3 NOIHARMONIC
Completion on: Kiss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1336.73

Test 1 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization

1 2.00 32 64.00 4.79 %
2 2.30 16 36.80 2.75 %
3 4.59 8 36.72 2.75 %
4 6.89 4 27.56 2.06 %
5 9.19 2 18.38 1.37 %

183.46 13.72 %

Experiment step size: 1.87 %

Test 1 results:
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Test duration (seconds): 10.0

Task Period Met Hissed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (asec)

1 500.000 20 0 0 0.000
2 434.783 23 0 0 0.000
3 217.865 46 0 0 0.000
4 145.138 69 0 0 0.000
5 108.814 92 0 0 0.000

Last test with no missed/skipped deadlines:

Experiment: EXPERIMENT_3 IONEARMOIIC
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1336.73

Test 45 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization

1 2.00 76 152.00 11.37 %
2 2.30 60 138.00 10.32 %
3 4.59 52 238.68 17.86 %
4 6.89 48 330.72 24.74 %
5 9.19 46 422.74 31.62 %

1282.14 95.92 %

Experiment step size: 1.87 %

Test 45 results:

Test duration (seconds): 10.0

Task Period met Hissed Skipped Average
No. in usecs Deadlines Deadlines Deadlines Late (usec)

1 500.000 20 0 0 0.000
2 434.783 23 0 0 0.000
3 217.865 46 0 0 0.000
4 145.138 69 0 0 0.000
5 108.814 92 0 0 0.000
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Test when deadlines first missed/skipped:

Experiment: EXPERIMENT_3 NONHARNONIC
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1336.73

Test 46 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization
1 2.00 77 154.00 11.52 %
2 2.30 61 140.30 10.50 %
3 4.59 53 243.27 18.20 %
4 6.89 49 337.61 25.26 %
5 9.19 47 431.93 32.31 %

1307.11 97.78 %

Experiment step size: 1.87'

Test 46 results:

Test duration (seconds): 10.0

Task Period met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (asec)

1 500.000 2 9 9 153.293
2 434.783 23 0 0 0.000
3 217.865 46 0 0 0.000
4 145.138 69 0 0 0.000
5 108.814 92 0 0 0.000

Final test performed:

Experiment: EXPERIMENT_3

0-72



Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1336.73

Test 48 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 79 158.00 11.82 %
2 2.30 63 144.90 10.84 %
3 4.59 55 252.45 18.89 %
4 6.89 51 351.39 26.29 %
5 9.19 49 450.31 33.69 %

1357.06 101.52 %

Experiment step size: 1.87 %

Test 48 results:

Test duration (seconds): 10.0

Task Period met Hissed Skipped Average

No. in asecs Deadlines Deadlines Deadlines Late (nsec)
1 500.000 2 9 9 197.211

2 434.783 23 0 0 0.000

3 217.865 46 0 0 0.000
4 145.138 69 0 0 0.000
5 108.814 92 0 0 0.000

Benchmark : Hartstone Benchmark, Version 1.0

Compiler : System Designers ID Ada MC68020 Ver 1.0, Kernel Ver V1.2A-33
Target : MVME133A-20 32-bit Monoboard Microcomputer (68020 6 20.0 MHz)

Characteristics of best test for this experiment:
(no missed/skipped deadlines)

Test 46 of Experiment 3 lonharmonic

Raw (non-tasking) benchmark speed in KVIPS: 1336.73

Full task set:
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Total Deadlines Task Set Total
Tasks Per Second Utilization KVIPS

5 24.97 95.92 % 1282.14

Highest-frequency task:

Period Deadlines Task Task
(asec) Per Second Utilization KYIPS

108.814 9.19 31.62 % 422.74

Experiment step size: 1.87 %

END OF HIRTSTOIE BENCHMARK SUMMARY RESULTS

C.2.6 RATESIM Results - Ezperiment 3

C. 2.6.1 Successful Schedaling

IRate Monotonic Scheduler Modell

1 - Add task 2 - Remove task 3 - Got from file
4 - Save to file 5 - Perform simulation 6 - Rate Monotonic Theorem
7 - Edit task 8 - Display tasks 9 - Quit

Enter choice: g

Enter file name to get the task set from: nh.exp3.pas
Execution

Task name Time(us) Period(us)/Frequency(Ez) Deadline(us)

Task 5 34636 108814 / 9.19 108814

Rendezvous : none

Task 4 36132 145138 / 6.89 145138
Rendezvous : none

Task 3 39126 217865 / 4.59 217866
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Rendezvous : none

Task 2 45109 434783 / 2.30 434783
Rendezvous none

Task 1 57079 500000 / 2.00 500000
Rendezvous none

lRate Monotonic Scheduler Modell

1 - Add task 2 - Remove task 3 - Get from file
4 - Save to file 5 - Perform simulation 6 - Rate Monotonic Theorem
7 - Edit task 8 - Display tasks 9 - Quit

Enter choice: p

Enter length of simulation in microseconds: 10-000-000
Print the Event History (y or n) : n

Task Statistics for task : Task S

Cumulative Execution-Time (us): 3186512

Deadlines Not : 92
Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks : 147
Worst case blocking time in a single period (us):

1451
Cumulative early deadlines (us): 6754726.00
Context Switches 239
Delay Expirations : 91

Task Statistics for task : Task 4
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Cumulative Execution-Time (us): 2493108
Deadlines Met : 69
Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks : 91
Worst case blocking time in a single period (us):

1508
Cumulative early deadlines (us): 5896415.00
Context Switches : 160
Delay Expirations : 68

Task Statistics for task : Task 3

Cumulative Execution-Time (us): 1799750
Deadlines Met : 46
Deadlines Missed 0
Preemptions suffered due to higher

priority user tasks or system tasks 96
Worst case blocking time in a single period (us):

2778
Cumulative early deadlines (us): 3681325.00
Context Switches 142
Delay Expirations : 45

Task Statistics for task : Task 2

Cumulative Execution-Time (us): 1037507
Deadlines Met : 23
Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks : 93
Worst case blocking time in a single period (us):

6506
Cumulative early deadlines (us): 1342289.00
Context Switches : 116
Delay Expirations : 22
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Task Statistics for task : Task 1

Cumulative Execution-Time (us): 1141580
Deadlines Not : 20
Deadlines Missed 0
Preemptions suffered due to higher

priority user tasks or system tasks 28
Worst case blocking time in a single period (us):

6517
Cumulative early deadlines (us): 4647639.00
Context Switches : 48
Delay Expirations : 19

Simulation Time (us): 10000102
User Cumulative Task Execution Time (us): 9658457
User Deadlines Net : 250
User Deadlines Missed : 0
Context Switches 705
Delay Expirations : 245
Rendezvous executed : 0
Cumulative induced priority inversion

time due to DELAY statement jitter (us): 19272
System Task Execution Time (us): 147460
Idle Time (us): 194185
Percentage User Task Execution Time : 96.583585
Percentage System Task Execution : 1.474585
Percentage Idle Time : 1.941830

C.2.6.2 Scheduling Failure- Eiperiment 3

IRate Monotonic Scheduler Modell

I - Add task 2 - Remove task 3 - Get from file
4 - Save to file 5 - Perform simulation 6 - Rate Monotonic Theorem
7 - Edit task 8 - Display tasks 9 - Quit

Enter choice: g

Enter file name to get the task set from: nh-exp3.fal
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Execution
Task name Time(us) Period(us)/Frequency(Hz) Deadline(us)

Task 5 34711 108814 / 9.19 108814
Rendezvous : none

Task 4 36207 145138 / 6.89 145138
Rendezvous : none

Task 3 39200 217865 / 4.59 217865
Rendezvous : none

Task 2 45184 434783 / 2.30 434783
Rendezvous : none

Task 1 57154 500000 / 2.00 500000
Rendezvous : none

IRate Monotonic Scheduler Modell

I - Add task 2 - Remove task 3 - Get from file
4 - Save to file 6 - Perform simulation 6 - Rate Monotonic Theorem
7 - Edit task 8 - Display tasks 9 - Quit

Enter choice: p

Enter length of simulation in microseconds: 10_000_000
Print the Event History (y or n) : n

Task Statistics for task : Task 5

Cumulative Execution-Time (us): 3193412
Deadlines Net : 92
Deadlines Missed 0
Preemptions suffered due to higher

priority user tasks or system tasks 148
Worst case blocking time in a single period (us):
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1414
Cumulative early deadlines (us): 6748095.00
Context Switches : 240
Delay Expirations : 91

Task Statistics for task : Task 4

Cumulative Execution-Time (us): 2498283
Deadlines Net : 69
Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks : 88
Worst case blocking time in a single period (us):

1513
Cumulative early deadlines (us): 5887428.00
Context Switches : 157
Delay Expirations : 68

Task Statistics for task : Task 3

Cumulative Execution-Time (us): 1803200
Deadlines Met : 46
Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks : 97
Worst case blocking time in a single period (us):

2809
Cumulative early deadlines (us): 3594934.00
Context Switches : 143
Delay Expirations : 45

Task Statistics for task : Task 2

Cumulative ExecutionTime (us): 1039232
Deadlines Met : 23
Deadlines Missed : 0
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Preemptions suffered due to higher
priority user tasks or system tasks : 90

Worst case blocking time in a single period (us):
6502

Cumulative early deadlines (us): 1325530.00
Context Switches : 113
Delay Expirations : 22

Task Statistics for task : Task 1

Cumulative Execution-Time (us): 1143080
Deadlines Met : 15
Deadlines Missed : 5
First deadline missed at : 1500000
Execution completed at : 1681646
Cumulative late deadlines (us): 603912.00
Preemptions suffered due to higher

priority user tasks or system tasks : 38
Worst case blocking time in a single period (us):

10833
Cumulative early deadlines (us): 3349588.00
Context Switches : 53
Delay Expirations : 14

Simulation Time (us): 10000032
User Cumulative Task Execution Time (us): 9677207
User Deadlines Met : 245
User Deadlines Missed : 5
Context Switches : 701
Delay Expirations 240
Rendezvous executed : 0
Cumulative induced priority inversion

time due to DELAY statement jitter (us): 19561
System Task Execution Time (us): 146069
Idle Time (us): 176736
Percentage User Task Execution Time : 96.771760
Percentage System Task Execution : 1.460685
Percentage Idle Time : 1.767354
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C.2.6.3 Scheduling Failure - Experiment 3(Haristone Benchmark Task Parameters)

IRate Monotonic Scheduler Modell

1 - Add task 2 - Remove task 3 - Get from file
4 - Save to file 5 - Perform simulation 6 - Rate Monotonic Theorem
7 - Edit task 8 - Display tasks 9 - Quit

Enter choice: g

Enter file name to get the task set from: nh-exp3.fal
Execution

Task name Time(us) Period(us)/Frequency(Hz) Deadline(us)

Task 5 35160 108814 / 9.19 108814
Rendezvous : none

Task 4 36657 145138 / 6.89 145138
Rendezvous : none

Task 3 39649 217865 / 4.59 217865
Rendezvous : none

Task 2 45634 434783 / 2.30 434783
Rendezvous : none

Task 1 57603 500000 / 2.00 500000
Rendezvous : none

IRate Monotonic Scheduler Modell

1 - Add task 2 - Remove task 3 - Got from file
4 - Save to file 5 - Perform simulation 6 - Rate Monotonic Theorem
7 - Edit task 8 - Display tasks 9 - Quit

Enter choice: p
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Enter length of simulation in microseconds: 10-000_000
Print the Event History (y or n) : n

Task Statistics for task : Task 5

Cumulative ExecutionTime (us): 3234720
Deadlines Not : 92
Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks : 144
Worst case blocking time in a single period (us):

1504

Cumulative early deadlines (us): 6708094.00
Context Switches : 236
Delay Expirations : 91

Task Statistics for task : Task 4

Cumulative Execution-Time (us): 2629333
Deadlines Not : 69
Deadlines Missed: 0
Preemptions suffered due to higher

priority user tasks or system tasks : 86
Worst case blocking time in a single period (us):

1536
Cumulative early deadlines (us): 5837444.00
Context Switches : 155
Delay Expirations : 68

Task Statistics for task : Task 3

Cumulative Execution-Time (us): 1823854
Deadlines Net : 46
Deadlines Kissed : 0
Preemptions suffered due to higher

priority user tasks or system tasks : 110
Worst case blocking time in a single period (us):
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2742
Cumulative early deadlines (us): 2705467.00
Context Switches : 156

Delay Expirations : 45

Task Statistics for task : Task 2

Cumulative Execution-Time (us): 1049582
Deadlines Met : 23
Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks : 75
Worst case blocking time in a single period (us):

6279
Cumulative early deadlines (us): 1225310.00
Context Switches : 98
Delay Expirations : 22

Task Statistics for task : Task I

Cumulative Execution-Time (us): 1152060
Deadlines Met : 4
Deadlines Missed : 16
First deadline missed at : 500000
Execution completed at : 819573
Cumulative late deadlines (us): 2686601.00
Preemptions suffered due to higher

priority user tasks or system tasks 63
Worst case blocking time in a single period (us):

11433
Cumulative early deadlines (us): 131786.00
Context Switches : 67
Delay Expirations 3

Simulation Time (us): 10000073
User Cumulative Task Execution Time (us): 9789549
User Deadlines Net : 234
User Deadlines Missed : 16
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Context Switches : 696
Delay Expirations 229
Rendezvous executed 0
Cumulative induced priority inversion

time due to DELAY statement jitter (us): 17487
System Task Execution Time (us): 143575
Idle Time (us): 66885
Percentage User Task Execution Time : 97.894775
Percentage System Task Execution : 1.435740
Percentage Idle Time : 0.668845

C.3 Task Set C - Synchronization

C.3.1 Haristone Results - Ezperiment 2 (Task Set 1)

HARTSTOIE BENCHMARK SUMMARY RESULTS

Baseline test:

Experiment: EXPERIMENT.2 SYNCHROIIZATION TASK SET 1
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KUIPS): 1336.75

Test 1 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization

1 6.00 32 192.00 14.36 %
2 12.00 16 192.00 14.36 %
3 24.00 8 192.00 14.36 %
4 96.00 4 384.00 28.73 %
6 96.00 2 192.00 14.36 %

1152.00 86.18 %

Experiment step size: 0.86 %

Test I results:
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Test duration (seconds): 10.0

Task Period met Missed Skipped Average
to. in masecs Deadlines Deadlines Deadlines Late (asec)

1 166.667 60 0 0 0.000
2 83.333 120 0 0 0.000
3 41.667 240 0 0 0.000
4 10.417 960 0 0 0.000
5 10.417 960 0 0 0.000

Last test with no missed/skipped deadlines:

Experiment: EXPERIMENT_2 SYNCHRONIZATION TASK SET 1
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1336.75

Test 6 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload
go. (Hertz) per period per second Utilization

1 6.30 32 201.60 16.08 %
2 12.60 16 201.60 15.08 %
3 25.20 8 201.60 15.08 %
4 100.80 4 403.20 30.16 %
5 100.80 2 201.60 15.08 %

1209.60 90.49 %

Experiment step size: 0.86 %

Test 6 results:

Test duration (seconds): 10.0

Task Period met Missed Skipped Average
go. in msecs Deadlines Deadlines Deadlines Late (nsec)

1 158.730 64 0 0 0.000
2 79.365 127 0 0 0.000
3 39.683 253 0 0 0.000
4 9.921 1009 0 0 0.000
5 9.921 1009 0 0 0.000
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Test when deadlines first missed/skipped:

Experiment: EZPERIMENT_2 SYNCHRONIZATION TASK SET 1
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1336.75

Test 7 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization

1 6.36 32 203.52 15.22 %
2 12.72 16 203.52 15.22 %
3 25.44 8 203.52 15.22 %
4 101.76 4 407.04 30.45 %
5 101.76 2 203.52 15.22 %

1221.12 91.35 %

Experiment step size: 0.86 %

Test 7 results:

Test duration (seconds): 10.0

Task Period Met Kissed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (nsec)

1 157.233 0 32 32 55.014
2 78.616 128 0 0 0.000
3 39.308 255 0 0 0.000
4 9.827 1018 0 0 0.000
5 9.827 1018 0 0 0.000

Final test performed:
See preceding sunary of test 7

Benchmark : Hartstone Benchmark, Version 1.0
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Compiler System Designers ID Ada KC68020 Ver 1.0, Kernel Ver VI.2A-33
Target :VNE133A-20 32-bit Monoboard Microcomputer (68020 Q 20.0 MWz)

Characteristics of best test for this experiment:
(no missed/skipped deadlines)

Test 6 of Experiment 2 Synchronization Task Set 1

Raw (non-tasking) benchmark speed in KWIPS: 1336.75

Full task set:

Total Deadlines Task Set Total
Tasks Per Second Utilization KWIPS

5 245.70 90.49 % 1209.60

Highest-frequency task:

Period Deadlines Task Task

(msec) Per Second Utilization KNIPS
9.921 100.80 15.08 % 201.60

Experiment step size: 0.86 %

END OF HARTSTONE BENCHMAIRK SUMMARY RESULTS

C.3.2 RATESIM Results - Experiment 2 (Task Set 1)

C.3.2.1 Synchronization Successful Scheduling

lRate Monotonic Scheduler Modell

1 - Add task 2 - Remove task 3 - Get from file
4 - Save to file 5 - Perform simulation 6 - Rate Monotonic Theorem
7 - Edit task 8 - Display tasks 9 - Quit

Enter choice: g
====== == ==========-===ZS:-•

Enter file name to get the task set from: syncl-pass
Execution

Task name Time(us) Period(us)/Frequency(Iz) Deadline(us)
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Task 4 2992 10417 96.00 10417

Rendezvous
Start Length Type lame

0 0 ANACCEPT a

Task 6 1496 10417 / 96.00 10417

Rendezvous
Start Length Type lame

0 0 A-CALL a

Task 3 5984 41667 / 24.00 41667

Rendezvous : none

Task 2 11969 83333 / 12.00 83333

Rendezvous none

Task 1 23938 166667 / 6.00 166667

Rendezvous none

=--------------------------------------------------

M ate Nonotonic Scheduler Modell

1 - Add task 2 - Remove task 3 - Get from file
4 - Save to file 5 - Perform simulation 6 - Rate Monotonic Theorem

7 - Edit task 8 - Display tasks 9 - Quit

Enter choice: p

Enter length of simulation in microseconds: 10-000-000
Print the Event History (y or n) : n

Task Statistics for task : Task 4
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Cumulative Execution-Time (us): 2872320
Deadlines Met : 960
Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks 1060
Worst case blocking time in a single period (us):

1012
Cumulative early deadlines (us): 6372124.00
Context Switches : 2980
Delay Expirations : 959

Task Statistics for task : Task 5
---------------------------------------------
Cumulative Execution-Time (us): 1436160
Deadlines Mot : 960
Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks : 1000
Worst case blocking time in a single period (us):

934
Cumulative early deadlines (us): 4786364.00
Context Switches 1960
Delay Expirations 959

Task Statistics for task : Task 3
--------------------------------------

Cumulative Execution-Time (us): 1436160
Deadlines Met : 240
Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks : 307
Worst case blocking time in a single period (us):

2510
Cumulative early deadlines (us): 5880079.00
Context Switches 547
Delay Expirations : 239

C-89



Task Statistics for task : Task 2

Cumulative Execution-Time (us): 1436280
Deadlines Met : 120
Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks : 317
Worst case blocking time in a single period (us):

5104
Cumulative early deadlines (us): 5133282.00
Context Switches : 437
Delay Expirations : 119

Task Statistics for task : Task 1

Cumulative Execution-Time (us): 1436280
Deadlines Met : 60
Deadlines Missed: 0
Preemptions suffered due to higher

priority user tasks or system tasks : 452
Worst case blocking time in a single period (us):

19093
Cumulative early deadlines (us): 470352.00
Context Switches : 512
Delay Expirations 59

Simulation Time (us): 10000015
User Cumulative Task Execution Time (us): 8617200
User Deadlines Met : 2340
User Deadlines Missed : 0
Context Switches : 5479
Delay Expirations : 2335
Rendezvous executed : 960
Cumulative induced priority inversion

time due to DELAY statement jitter (us): 173643
System Task Execution Time (us): 1095886
Idle Time (us): 286959
Percentage User Task Execution Time : 86.171871
Percentage System Task Execution : 10.958544
Percentage Idle Time : 2.869586

C-90



C.3.2.2 Synchronization Scheduling Failure - Experiment 2 (Task Set 1)

IRate Monotonic Scheduler Modell

1 - Add task 2 - Remove task 3 - Get from file
4 - Save to file 5 - Perform simulation 6 - Rate Monotonic Theorem
7 - Edit task 8 - Display tasks 9 - Quit

Enter choice: g

Enter file name to get the task set from: syncl-fail
Execution

Task name Time(us) Period(us)/Frequency(Hz) Deadline(us)

Task 4 2992 9921 / 100.80 9921
Rendezvous

Start Length Type lame

0 0 ANACCEPT a

Task 5 1496 9921 / 100.80 9921
Rendezvous

Start Length Type Name

0 0 A-CALL a

Task 3 5984 39683 / 25.20 39683
Rendezvous : none

Task 2 11969 79365 / 12.60 79365
Rendezvous : none

Task 1 23938 158730 / 6.30 158730
Rendezvous : none

IRate Monotonic Scheduler Modell
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1 - Add task 2 - Remove task 3 - Get from file
4 - Save to file 5 - Perform simulation 6 - Rate Monotonic Theorem
7 - Edit task 8 - Display tasks 9 - Quit

Enter choice: p

Enter length of simulation in microseconds: 10_000_000
Print the Event History (y or n) : n

Task Statistics for task : Task 4

Cumulative Execution-Time (us): 3015936
Deadlines Met : 1008
Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks : 1105
Worst case blocking time in a single period (us):

1010
Cumulative early deadlines (us): 6188872.00

Context Switches : 3121
Delay Expirations : 1007

Task Statistics for task : Task 6

Cumulative Execution-Time (us): 1507968
Deadlines Net : 1008
Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks 1051

Worst case blocking time in a single period (us):
933

Cumulative early deadlines (us): 4524316.00
Context Switches : 2059
Delay Expirations : 1007

Task Statistics for task : Task 3
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Cumulative Execution-Time (us): 1507968
Deadlines Met : 252
Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks 388
Worst case blocking time in a single period (us):

2622
Cumulative early deadlines (us): 5662068.00
Context Switches : 640
Delay Expirations : 251

Task Statistics for task : Task 2

Cumulative Execution-Time (us): 1508094
Deadlines Met : 126
Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks : 416
Worst case blocking time in a single period (us):

7616
Cumulative early deadlines (us): 2718723.00
Context Switches : 542
Delay Expirations : 125

Task Statistics for task : Task 1

Cumulative Execution-Time (us): 1310681
Deadlines Met : 0
Deadlines Missed : 54
First deadline missed at : 158730
Execution completed at : 224525
Cumulative late deadlines (us): 34108980.00
Preemptions suffered due to higher

priority user tasks or system tasks : 466
Worst case blocking time in a single period (us):

27396
Cumulative early deadlines (us): 0.00
Context Switches : 466
Delay Expirations : 0
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Simulation Time (us): 10000100
User Cumulative Task Execution Time (us): 8850647
User Deadlines Net : 2394
User Deadlines Missed : 54
Context Switches 5771
Delay Expirations : 2390
Rendezvous executed : 1008
Cumulative induced priority inversion

time due to DELAY statement jitter (us): 182082
System Task Execution Time (us): 1149237
Idle Time (us): 0
Percentage User Task Execution Time : 88.505585
Percentage System Task Execution 11.492255
Percentage Idle Time : 0.000000

C.3.2.S Scheduling Failure - Task Set 1(Hartstone Benchmark Task Parameters)

IRate Monotonic Scheduler Modell

1 - Add task 2 - Remove task 3 - Get from file
4 - Save to file 5 - Perform simulation 6 - Rate Monotonic Theorem
7 - Edit task 8 - Display tasks 9 - Quit

Enter choice: g

Enter file name to get the task set from: syncl.hart.fail
Execution

Task name Time(us) Period(us)/Frequency(Hz) Deadline(us)

Task 5 1496 9827 / 101.76 9827
Rendezvous

Start Length Type lame

0 0 A-CALL a

Task 4 2992 9827 / 101.76 9827
Rendezvous

Start Length Type lame
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0 0 ANACCEPT a

Task 3 5984 39308 / 25.44 39308

Rendezvous : none

Task 2 11969 78616 / 12.72 78616
Rendezvous : none

Task 1 23938 157233 [ 6.36 157233

Rendezvous : none

IRate Monotonic Scheduler Modell

1 - Add task 2 - Remove task 3 - Get from file

4 - Save to file 5 - Perform simulation 6 - Rate Monotonic Theorem
7 - Edit task 8 - Display tasks 9 - Quit

Enter choice: p

Enter length of simulation in microseconds: 10_000_000

Print the Event History (y or n) : n

Task Statistics for task : Task 5

Cumulative Execution-Time (us): 1522928
Deadlines Met : 1018

Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks : 1065
Worst case blocking time in a single period (us):

955
Cumulative early deadlines (us): 4460447.00

Context Switches 2083
Delay Expirations : 1017
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Task Statistics for task : Task 4

Cumulative Execution-Time (us): 3045866
Deadlines Net : 1018
Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks 1104
Worst case blocking time in a single period (us):

879
Cumulative early deadlines (us): 6141945.00
Context Switches 3140
Delay Expirations 1017

Task Statistics for task : Task 3

Cumulative ExecutionTime (us): 1525920
Deadlines Met : 255
Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks : 294
Worst case blocking time in a single period (us):

2325
Cumulative early deadlines (us): 5664070.00
Context Switches : 549
Delay Expirations : 254

Task Statistics for task : Task 2

Cumulative Execution-Time (us): 1522692
Deadlines Met : 127
Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks : 419
Worst case blocking time in a single period (us):

6891
Cumulative early deadlines (us): 2681980.00
Context Switches : 546
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Delay Expirations : 127

Task Statistics for task : Task I

Cumulative Execution-Time (us): 1259118
Deadlines Met : 0
Deadlines Missed : 52
First deadline missed at : 157233
Execution completed at : 224525
Cumulative late deadlines (us): 46335528.00
Preemptions suffered due to higher

priority user tasks or system tasks : 465
Worst case blocking time in a single period (us):

26016
Cumulative early deadlines (us): 0.00
Context Switches : 465
Delay Expirations : 0

Simulation Time (us): 10004000
User Cumulative Task Execution Time (us): 8876514
User Deadlines Met : 2418
User Deadlines Missed : 52
Context Switches : 5716
Delay Expirations : 2415
Rendezvous executed : 1018
Cumulative induced priority inversion

time due to DELAY statement jitter (us): 228590
System Task Execution Time (us): 1127278
Idle Time (us): 0
Percentage User Task Execution Time : 88.729648
Percentage System Task Execution : 11.268273
Percentage Idle Time : 0.000000

C.S.3 Hartasone Resutds - Ezperiment 2 (Task Set 2)

HBATSTORE BEICIMARK SUMMARY RESULTS
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Baseline test:

Experiment: EXPERIMENT_2 SYICHRONIZATION TASK SET 2
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1336.73

Test I characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization

1 2.00 32 64.00 4.79 %
2 4.00 16 64.00 4.79 %
3 8.00 8 64.00 4.79 %
4 32.00 4 128.00 9.58 %.
5 32.00 0 0.00 0.00 0

320.00 23.94 %

Experiment step size: 2.39 %

Test 1 results:

Test duration (seconds): 10.0

Task Period Net Missed Skipped Average
No. in asecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 31.250 320 0 0 0.000
5 31.250 320 0 0 0.000

Last test with no missed/skipped deadlines:

Experiment: EXPERIMENT_2 SYNCHRONIZATION TASK SET 2
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KVIPS): 1336.73

Test 28 characteristics:
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Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 7.40 32 236.80 17.71 %
2 14.80 16 236.80 17.71 %

3 29.60 8 236.80 17.71 %

4 118.40 4 473.60 35.43 %
5 118.40 0 0.00 0.00 %

1184.00 88.57 %

Experiment step size: 2.39 %

Test 28 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (asec)
1 135.135 75 0 0 0.000

2 67.568 149 0 0 0.000
3 33.784 297 0 0 0.000

4 8.446 1185 0 0 0.000

5 8.446 1185 0 0 0.000

Test when deadlines first missed/skipped:

Experiment: EXPERIMENT..-2 SYNCHRONIZATION TASK SET 2

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KVIPS): 1336.73

Test 29 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization

1 7.60 32 243.20 18.19 %

2 15.20 16 243.20 18.19 %

3 30.40 8 243.20 18.19 %

4 121.60 4 486.40 36.39 %

5 121.60 0 0.00 0.00 %

1216.00 90.97 %
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Experiment stop size: 2.39 %

Test 29 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average
No. in usecs Deadlines Deadlines Deadlines Late (asec)

1 131.679 0 38 38 63.666
2 66.789 162 0 0 0.000
3 32.896 304 0 0 0.000
4 8.224 1216 0 0 0.000
6 8.224 1216 0 0 0.000

Final test performed:
See preceding summary of test 29

Benchmark : Hartstone Benchmark, Version 1.0
Compiler : System Designers XD Ada MC68020 Ver 1.0, Kernel Ver VI.2A-33
Target : MVNE133A-20 32-bit Monoboard Microcomputer (68020 6 20.0 MHz)

Characteristics of best test for this experiment:

(no missed/skipped deadlines)

Test 28 of Experiment 2 Synchronization Task Set 2

Raw (non-tasking) benchmark speed in KVIPS: 1336.73

Full task set:

Total Deadlines Task Set Total
Tasks Per Second Utilization hWIPS

5 288.60 88.67 % 1184.00

Highest-frequency task:

Period Deadlines Task Task
(asoc) Per Second Utilization KhIPS
8.446 118.40 0.00 % 0.00
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Experiment step size: 2.39 %

END OF HARTSTONE BENCHMARK SUMMARY RESULTS

C.3.4 RATESIM Results - Experiment 2 (Task Set 2)

C.3.4.1 Synchronization Successful Scheduling - Experiment 2 (Task Set 2)

lRate Monotonic Scheduler Modell

1 - Add task 2 - Remove task 3 - Get from file

4 - Save to file 5 - Perform simulation 6 - Date Monotonic Theorem

7 - Edit task 8 - Display tasks 9 - Quit

Enter choice: g

Enter file name to get the task set from: sync2_pass
Execution

Task name Time(us) Period(us)/Frequency(Hz) Deadline(us)

Task 4 2992 8717 / 114.72 8717
Rendezvous

Start Length Type Name

0 1496 ANACCEPT a

Task 5 1 8717 / 114.72 8717
Rendezvous

Start Length Type Name

0 0 A-CALL a

Task 3 5984 34868 / 28.68 34868
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Rendezvous : none

Task 2 11969 69735 / 14.34 69736
Rendezvous : none

Task 1 23938 139470 / 7.17 139470
Rendezvous : none

IRate Monotonic Scheduler Modell

1 - Add task 2 - Remove task 3 - Get from file
4 - Save to file 5 - Perform simulation 6 - Rate Monotonic Theorem
7 - Edit task 8 - Display tasks 9 - Quit

Enter choice: p

Enter length of simulation in microseconds: 10-000_000
Print the Event History (y or n) : n

Task Statistics for task : Task 4

Cumulative Execution-Time (us): 3434816
Deadlines Net : 1148
Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks : 1248
Worst case blocking time in a single period (us):

1152
Cumulative early deadlines (us): 5637780.00
Context Switches 3544
Delay Expirations : 1147

Task Statistics for task : Task 5
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Cumulative Execution-Time (us): 1148
Deadlines Met : 1148
Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks 1253
Worst case blocking time in a single period (us):

912
Cumulative early deadlines (us): 5465088.00
Context Switches 2401
Delay Expirations : 1147

Task Statistics for task : Task 3

Cumulative Execution-Time (us): 1717408
Deadlines Met : 287
Deadlines Missed: 0
Preemptions suffered due to higher

priority user tasks or system tasks : 335
Worst case blocking time in a single period (us):

2390
Cumulative early deadlines (us): 5941042.00
Context Switches : 622
Delay Expirations 286

Task Statistics for task : Task 2

Cumulative Execution-Time (us): 1723536
Deadlines Met : 144
Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks : 348
Worst case blocking time in a single period (us):

5028
Cumulative early deadlines (us): 5076117.00
Context Switches : 492
Delay Expirations : 143
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Task Statistics for task : Task 1

Cumulative Execution-Time (us): 1713056
Deadlines Met : 71
Deadlines Missed 0
Preemptions suffered due to higher

priority user tasks or system tasks 550
Worst case blocking time in a single period (us):

18999
Cumulative early deadlines (us): 111951.00
Context Switches 621
Delay Expirations : 71

Simulation Time (us): 10007179
User Cumulative Task Execution Time (us): 8589964
User Deadlines Met : 2798
User Deadlines Missed : 0
Context Switches : 6532
Delay Expirations : 2794
Rendezvous executed : 1148
Cumulative induced priority inversion

time due to DELAY statement jitter (us): 237238
System Task Execution Time (us): 1302097
Idle Time (us): 115118
Percentage User Task Execution Time : 85.838017
Percentage System Task Execution : 13.011629
Percentage Idle Time : 1.150354

C.34.2 Synchronization Scheduling Failure - Experiment 2 (Task Set 2)

IRate Monotonic Scheduler Modell

I - Add task 2 - Remove task 3 - Get from file
4 - Save to file 5 - Perform simulation 6 - Rate Monotonic Theorem
7 - Edit task 8 - Display tasks 9 - Quit

Enter choice: g

Enter file name to got the task set from: sync2_fail
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Execution

Task name Time(us) Period(us)/Frequency(Hz) Deadline(us)

Task 4 2992 8705 / 114.88 8705

Rendezvous

Start Length Type Name

0 1496 ANACCEPT a

Task 5 1 8705 / 114.88 8705

Rendezvous

Start Length Type Name

0 0 A-CALL a

Task 3 5984 34819 / 28.72 34819
Rendezvous : none

Task 2 11969 69638 / 14.36 69638
Rendezvous : none

Task 1 23938 13t276 / 7.18 139276
Rendezvous none

IRate Monotonic Scheduler Modell

I - Add task 2 - Remove task 3 - Get from file

4 - Save to file 5 - Perform simulation 6 - Rate Monotonic Theorem
7 - Edit task 8 - Display tasks 9 - Quit

Enter choice: p

Enter length of simulation in microseconds: 10_000_000

Print the Event History (y or n) : n
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Task Statistics for task : Task 4
---------------------------------------------
Cumulative Execution-Time (us): 3437808
Deadlines Met : 1149
Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks : 1259

Worst case blocking time in a single period (us):

1051
Cumulative early deadlines (us): 5629713.00
Context Switches : 3557
Delay Expirations 1148

Task Statistics for task : Task 5
---------------------------------------------
Cumulative Execution-Time (us): 1149
Deadlines Met : 1149
Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks : 1275

Worst case blocking time in a single period (us):

934
Cumulative early deadlines (us): 5456871.00
Context Switches : 2424
Delay Expirations : 1148

Task Statistics for task : Task 3
---------------------------------------------
Cumulative Execution-Time (us): 1721972
Deadlines Met : 287
Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks : 421
Worst case blocking time in a single period (us):

2819
Cumulative early deadlines (us): 5896343.00
Context Switches 708
Delay Expirations 287
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Task Statistics for task : Task 2

Cumulative Execution-Time (us): 1723536
Deadlines Met : 144
Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks 341
Worst case blocking time in a single period (us):

7522
Cumulative early deadlines (us): 4878305.00
Context Switches : 485
Delay Expirations : 143

Task Statistics for task : Task I

Cumulative Execution-Time (us): 1712001

Deadlines Met : 69
Deadlines Missed: 2
First deadline missed at : 8078008
Execution completedat : 8078013
Cumulative late deadlines (us): 49502.00
Preemptions suffered due to higher

priority user tasks or system tasks : 537
Worst case blocking time in a single period (us):

27126
Cumulative early deadlines (us): 70667.00
Context Switches : 606
Delay Expirations : 69

Simulation Time (us): 10002048
User Cumulative Task Execution Time (us): 8596466
User Deadlines Met : 2798
User Deadlines Missed: 2
Context Switches : 6629
Delay Expirations : 2795
Rendezvous executed : 1149
Cumulative induced priority inversion

time due to DELAY statement jitter (us): 237328
System Task Execution Time (us): 1331845
Idle Time (us): 73729
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Percentage User Task Execution Time 85.947058
Percentage System Task Execution 13.315723
Percentage Idle Time 0.737139

C.3.4.3 Scheduling Failure - Task Set 2(Hartstone Benchmark Task Parameters)

IRate Monotonic Scheduler Model[

1 - Add task 2 - Remove task 3 - Get from file
4 - Save to file 5 - Perform simulation 6 - Rate Monotonic Theorem
7 - Edit task 8 - Display tasks 9 - Quit

Enter choice: g

Enter file name to get the task set from: sync2_hart.fail
Execution

Task name Time(us) Period(us)/Frequency(Hz) Deadline(us)

Task 5 1 8224 / 121.60 8224
Rendezvous

Start Length Type Name

0 0 A-CALL a

Task 4 2992 8224 / 121.60 8224
Rendezvous

Start Length Type lame

0 1496 ANACCEPT a

Task 3 5984 32895 / 30.40 32895
Rendezvous : none

Task 2 11969 65789 / 15.20 65789
Rendezvous : none

Task 1 23938 131579 / 7.60 131579
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Rendezvous : none

IRate Monotonic Scheduler Modell

1 - Add task 2 - Remove task 3 - Get from file
4 - Save to file 5 - Perform simulation 6 - Rate Monotonic Theorem
7 - Edit task 8 - Display tasks 9 - Quit

Enter choice:

Enter length of simulation in microseconds: 10-0000_00
Print the Event History (y or n) : n

Task Statistics for task : Task 5

Cumulative Execution-Time (us): 1216
Deadlines Met : 1216
Deadlines Missed : 0

Preemptions suffered due to higher
priority user tasks or system tasks : 1299

Worst case blocking time in a single period (us):
926

Cumulative early deadlines (us): 5191538.00
Context Switches : 2515
Delay Expirations : 1215

Task Statistics for task : Task 4

Cumulative Execution-Time (us): 3638272
Deadlines Met : 1216
Deadlines Missed : 0

Preemptions suffered due to higher
priority user tasks or system tasks : 1330

Worst case blocking time in a single period (us):
1040

Cumulative early deadlines (us): 5374430.00
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Context Switches : 3762
Delay Expirations : 1215

Task Statistics for task : Task 3

Cumulative Execution-Time (us): 1819136
Deadlines Met : 304
Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks : 480
Worst case blocking time in a single period (us):

2855
Cumulative early deadlines (us): 5650640.00
Context Switches : 784
Delay Expirations : 303

Task Statistics for task : Task 2

Cumulative Execution-Time (us): 1819288
Deadlines Met : 152
Deadlines Missed : 0
Preemptions suffered due to higher

priority user tasks or system tasks 534
Worst case blocking time in a single period (us):

8965
Cumulative early deadlines (us): 2538453.00
Context Switches : 686
Delay Expirations : 151

Task Statistics for task : Task 1

Cumulative Execution-Time (us): 1311486
Deadlines Mot : 0
Deadlines Missed 54
First deadline missed at : 131579
Execution completed at : 194282
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Cumulative late deadlines (us): 71648499.00
Preemptions suffered due to higher

priority user tasks or system tasks : 539
Worst case blocking time in a single period (us):

29457
Cumulative early deadlines (us): 0.00
Context Switches : 539
Delay Expirations 0

Simulation Time (us): 10000040
User Cumulative Task Execution Time (us): 8589398
User Deadlines Met : 2888
User Deadlines Missed : 54
Context Switches : 7016
Delay Expirations : 2884
Rendezvous executed : 1216
Cumulative induced priority inversion

time due to DELAY statement jitter (us): 250963
System Task Execution Time (us): 1410426
Idle Time (us): 0
Percentage User Task Execution Time : 85.893636
Percentage System Task Execution : 14.104204
Percentage Idle Time 0.000000
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Appendix D. RATESIM Source Code

This appendix is available upon request, direct requests to:

Major Paul Bailor
Department of the Air Force
AFIT/ENG WPAFB, OH 45433-7765
email: pbailor@afit.af.mil
comm: (513)255-3708
DSN: 785-3708
or
Captain Rusty Baldwin
210 Blair Drive
Fairborn, OH 45324.
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Appendix E. A CEC Test Results

This appendix is available upon request, direct requests to:

Major Paul Bailor
Department of the Air Force
AFIT/ENG WPAFB, OH 45433-7765
email: pbailor@afit.af.mil
comm: (513)255-3708
DSN: 785-3708
or
Captain Rusty Baldwin
210 Blair Drive
Fairborn, OH 45324.
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Appendix F. RATESIM User's Manual

This appendix is available upon request, direct requests to:

Major Paul Bailor
Department of the Air Force
AFIT/ENG WPAFB, OH 45433-7765
email: pbailor@afit.af.mil
cornm: (513)255-3708
DSN: 785-3708
or
Captain Rusty Baldwin
210 Blair Drive
Fairborn, OH 45324.
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